射频宽带低噪声LC VCO
所设计的LC VCO电路拓扑结构如图1(a)所示。其中M1,M2为交叉PMOS管结构,构成负阻环节;M3,M4及IBl构成尾电流镜电路,为了减小该电路的1/f 噪声对VCO的L(△ω)的影响,通常使用PMOS管构成,原因是PMOS管比NMOS管有更低的闪烁噪声拐角频率,同时M3,M4的宽长比一般较大,这样可以改善低频率闪烁噪声;L1~L4,CV,M5,M6及电容降列构成了LC谐振腔。图1(b)为电容开关阵列内部结构,其中C1,C2为电容阵列。通过切换以实现多波段VCO,该方法使用3只NMOS管控制电容的断开或闭合,当UC1,2为高电平时,NMOS处于导通状态,电容阵列处于开启状态,相反 UC1,2为低电平时,电容阵列处于关闭状态,从而实现多波段切换;设计时波段切换除了采用电容阵列外,还使用开关电感器来实现更大范围的波段切换,两只 NMOS管M5,M6用于电感器的开关切换,当UL给出关闭信号时,M5,M6相当于短路,此时的电感为L1或L4,当UL给出开启信号时,M5,M6相当于断路,此时的电感量相当于L1与L2或L3与L4之和;CV为累积型MOS电容,与普通变容二极管相比,其具有较大的调谐范围与较好单调性,设计中 MOS电容在0~3.3 V的调谐电压下,电容量变化范围为0.7~1.4 pF。Q1,Q2和恒流源IB2,IB3构成输出缓冲器,目的是将信号进行放大。另外,图1(a)中Q1,Q2为BJT,其他均为CMOS器件,这样通过采用SiGe BiCMOS技术,提高了缓冲器的工作速度及驱动能力,在VCO振荡波形缓冲输出的同时还减小了外部电路对VCO振荡环节的噪声干扰。
2 流片制作及实测结果分析
采用0.35μm SiGe BiCMOS工艺,且用高掺杂衬底来降低闩锁效应,对所设计的VCO电路进行工艺流片,芯片照片如图2所示,整个芯片尺寸为1.2 mm×1.4 mm,电路版图设计主要考虑降低寄生电感、电容参数及其敏感性,同时减小输出波形失真并尽量保证布局的对称性。由于振荡器结点处的寄生效应直接影响压控振荡器的性能指标,所以为减小金属层与衬底之间的寄生电容,直接采用顶层金属层作为振荡器结点的连接层。另外,通过加厚金属层厚度来增大电流,从而抑制寄生电容。为了优化芯片设计,开关电容阵列放置于输出端和两个电阻之间。
工艺流片在江苏省电工电子学重点实验室进行,实验条件和测试过程为:先将LC VCO芯片经键合线与PCB板相连,再把PCB板固定在Al基座上,然后焊接片外元器件于PCB板上,最后将振荡输出信号经SMA接插件与测量仪器、仪表相连接。使用国产华博WS-100B电子电路实验设备进行测试,并用美国泰克Tektronix TDS5034B数字示波器显示振荡波形并测试频率等参数。MOS器件宽长比及电容电感之值如表2所示。表中(W/L)1, (W/L)2, (W/L)3, (W/L)4~6分别为M1,M2,M3,M4~M6的宽长比。通过变换电容阵列及开关电感等参数,共测出6组波段:1.9~2.1 GHz,2.1~2.4 GHz,2.4~3.0 GHz,3.0~3.4 GHz。3.4~4.2 GHz,4.2~5.7 GHz。当电容阵列与电感全为关闭状态时,电路获得4.2~5.7 GHz连续可调谐的输出信号,反之,当电容阵列与电感全为开启状态时,电路获得1.9~2.1 GHz的最低频率输出信号,如图3所示。这6组波段是连续可调的,因而构成了1.9~5.7 GHz的连续、可调的带宽范围。
4是所设计的VCO电路工作在2.4 GHz时的两路差分输出仿真实验波形。由图4可见,当电源电压为3.3 V时,电路经21 ns后进入稳定振荡状态,此时所设计的VCO的核电流约为1.8 mA,输出电压摆幅达到3.6 UP-P(UP-P为输出电压峰-峰值),从图上明显可见,波形对称性良好。图5是所设计的VCO在中心频率为2.4 GHz、偏离中心频率1 kHz~1 MHz时获得的仿真与实测相位噪声(Nphase)曲线对比情况。根据曲线图可知,在偏离中心频率1 MHz处,所设计的VCO的仿真Nphase值为-110.35 dBc/Hz,实测Nphase值为-111.64 dBc/Hz,此实测数据比文献[1]的-113.70 dBc/Hz降低了2.06 dBc/Hz,比文献[2]的-114.00 dBc/Hz降低了2.36 dBc/Hz。表3给出了文献[1-2]及所设计的VCO的仿真与实测数据比较情况,其中fW表示带宽;tPD表示起振时延;DP表示起振时延一功耗 PD。由表3数据易见,所设计的VCO的频率范围、相位噪声都比文献[1-2]有所改善,虽然实测功耗PD比文献[1-2]略大3~4 mW,但起振时延比文献[1-2]小了约24 ms。而综合性能指标--起振时延-功耗积DP却比文献[1-2]约小100 pJ,足以验证了所设计的LC VCO电路在高速、低功耗性能方面的优势。
3 结论
运用台积电(TSMC)0.35 μm SiGe BiCMOS进行工艺设计,并实验验证了一种集成多波段、低噪声的差分BiCMOS LC VCO。所设计的VCO采用开关电容阵列
- 什么是超宽带(UWB)技术(02-24)
- Freescale MD7IC2050N 10W 1880MHz宽带放大方案(07-05)
- 关于ThinkRF数字宽带接收机的100% POI计算(01-17)
- 超宽带通信中的天线技术(10-23)
- WiMAX关注的问题(10-13)
- 宽带平面螺旋天线的研究与设计(08-18)