当每一μA都发挥其作用!
为最大程度减轻设计工作量并缩短上市时间,ADI构建了全集成式光学子系统,用于反射光学测量。即ADPD174,内含进行光学测量所需的全部器件。图3为ADPD174子系统框图。该模块尺寸为6.5 mm &TImes; 2.8 mm,对于可穿戴系统极具吸引力。
该模块采用一个大型光电二极管、两个绿色LED和一个IR LED。板载混合信号ASIC包括模拟信号处理模块、SAR型ADC、数字信号处理模块、I2C通信接口和三个可编程LED电流源。
系统驱动LED并使用其1.2 mm2光电二极管测量相应的光学返回信号。利用可穿戴设备测量PPG面临的最大挑战就是克服环境光和运动产生伪像的干扰。环境光会对测量结果产生极大的影响。阳光并不是很难抑制,但是来自荧光灯和节能灯的特殊光包含交流分量,较难消除。ADPD174光学模块具有两级环境光照抑制功能。在光传感器和输入放大器级之后,集成带通滤波器,后接同步解调器,可提供一流的抑制环境光和最高100 kHz直流电干扰功能。ADC具有14位分辨率和最高255的脉冲值,共可获得20位测量分辨率。累加多个样本则可实现最高27位的分辨率。
例如,ADPD174以两个独立时隙运行,以测量两个不同的波长并可按顺序执行结果。在每个时隙期间,执行完整的信号路径,从LED激励开始,然后捕获光信号和处理数据。
图3.ADPD174光学子系统框图。
每个电流源能够驱动电流高达250 mA的LED。创新的LED脉冲控制方式保持较低的平均功耗,在很大程度上有助于节省系统的功耗和电池寿命。
这种LED驱动电路的优点是,它是动态可扩展的。很多因素都会影响接收光学信号的信噪比(SNR),如肤色或传感器与皮肤间的毛发,这些都会影响接收端的灵敏度。因此,激励LED配置非常方便,可用于构建自适应系统。所有时序和同步都由模拟前端处理,因此不会增加系统微处理器的任何开销。正常情况下,您可以使用ADPD174以约一毫瓦功率电平执行可靠的心率监测。为了找到这个工作点,我们可以调谐跨阻放大器(TIA)的增益,并结合设置最大LED峰值电流。优化LED电流和TIA增益后,我们可以增加LED脉冲的数量来获取更多信号。请注意,增加LED峰值电流即按比例增加SNR,而增加n倍脉冲数量,仅会导致n平方根(√n)的SNR改善。
找到心率设备的最佳设置在很大程度上也依赖于用户。用户的肤色以及设备位置、温度和血液流动都会影响信号强度。计算功耗时,光学前端可以看做两个独立的功率因素,IADPD和ILED。IADPD是输入放大器级、ADC和数字状态机消耗的电流。这些功率值在很大程度上依赖ADC的采样率。LED电流ILED将随人体肤色和传感器在身体上位置而变化。对于深肤色,则需要更多的LED电流,当传感器位于身体血液流动少的位置时也需要更多LED电流。平均LED电流随LED驱动脉冲宽度、脉冲数量和ADC采样时间变化。平均LED电流是最大LED电流乘以脉冲宽度和脉冲的数量。可将这视为一个时隙,每当获得新样本时重复一次。脉冲宽度可窄至1 μs。
若要在手腕上实现良好的心率测量,当使用两个宽度为1 μs的脉冲时,LED峰值电流需要达到125 mA。对于100 Hz采样频率,平均LED驱动需要25 μA。当我们增加250 μA平均AFE电流时,光学前端消耗275 μA (@ 3 V = 825 μW)。
其他机械挑战
我们讨论了进行光学系统设计面对的其中一项挑战:环境光干扰。另一个大难题是在反射模式光学系统中解决内部光污染问题。在一个设计完美的系统中,LED发出的所有光都被发送至组织,且仅能看到反射光并由光传感器进行测量。但在现实中,LED灯光会被外壳上的透明窗反射,并在未穿透标绿的光路径组织的情况下直接送回光传感器(参见图4)。
图4.内部光污染说明。
这种ILP效应导致直流失调,并将限制信号的交流分量,也称为调制指数(MI)。实际上,MI是我们唯一感兴趣的信号。ILP可通过分离窗口解决,—但是,实现批量生产非常困难和昂贵。ADPD174可以解决这个问题。它具有特殊设计的外壳,无需分离外壳上的透明窗,即可减少ILP行为。图5中显示ADPD174与其前代产品相比,ILP减少和LED电流函数关系的改进情况。这是与市场上其他分立式或集成式设备相比的另一优势。
图5.ADPD174 ILP影响与其前代产品。
您的系统总功耗
在光学系统中,除了光照干扰,还需要消除运动造成的干扰。运动会影响可穿戴系统的总体性能,由于运动,机械连接或与组织的接触状态会改变,造成光学读数误差。因此,测量设备的运动并弥补干扰造成的影响是很重要的。ADI超低功耗3轴ADXL362 MEM传感器完全支持这些需求。传感器测量
- 谷歌眼镜初体验:眨眼拍照、WIFI接入、语音文本转换(03-24)
- 可穿戴设备新趋势:触摸即可发光的“电子皮肤”(06-24)
- 医疗可穿戴智能设备的主要器件:MEMS传感器(02-14)
- 应可穿戴保健设备大势 ADI最新解决方案详解(02-11)
- 可穿戴设备市场起飞,蓝牙Smart引爆设计热潮!(02-17)
- 三星最新曲面Gear Fit最详拆解:内部设计构造大揭秘(04-29)