生物传感器的分类详解
生物传感器是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。
生物传感器由分子识别部分(敏感元件)和转换部分(换能器)构成:
以分子识别部分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分是生物传感器选择性测定的基础。主要有酶、抗体、核酸、DNA、细胞受体和完整细胞等。
把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),主要有电化学器件、光学器件、热敏器件、声波器件、压敏器件等。
生物传感器原理图
各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。
生物传感器实现以下三个功能:
感受:提取出动植物发挥感知作用的生物材料,包括:生物组织、微生物、细胞器、酶、抗体、抗原、核酸、DNA等。实现生物材料或类生物材料的批量生产,反复利用,降低检测的难度和成本。
观察:将生物材料感受到的持续、有规律的信息转换为人们可以理解的信息。
反应:将信息通过光学、压电、电化学、温度、电磁等方式展示给人们,为人们的决策提供依据。
生物传感器的分类
根据生物传感器中的分子识别元件和换能器(信号转换器)的不同,可以从这两个方面对生物传感器分类:
按分子识别元件分:
酶传感器、微生物传感器、细胞器传感器、组织传感器、免疫传感器。
酶传感器
是由酶催化剂和电化学器件构成的。由于酶是蛋白质组成的生物催化剂,能催化许多生物化学反应,生物细胞的复杂代谢就是由于成千上万的酶控制的。酶的催化效率极高,而且具有高度专一性,即能对待测生物量(底物)进行选择性催化,并且有化学放大作用。因此利用酶的特性可以制造出高灵敏度、选择性好的传感器。
微生物传感器
用微生物作为分子识别元件。与酶相比,微生物更经济、耐久性也好。
免疫传感器的基本原理是免疫反应。 利用抗体能识别抗原结合的功能的生物传感器称为免疫传感器。
生物组织传感器
是以活的动植物组织细胞切片作为识别元件,并与相应的变换元件构成的传感器。
生物组织传感器具有如下一些特点:
1) 生物组织含有丰富的酶类,这些酶在适宜的自然环境中,可以得到相当稳定的酶活性,许多组织传感器工作寿命比相应的酶传感器寿命长很多;
2) 在所需要的酶难以提纯时,直接利用生物组织可以得到足够高的酶活性;
3) 组织识别元件制作简便,一般不需要采用固定化技术。
细胞器电极传感器
是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小"器官",如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。
生物传感器按转换器件分类:
生物电极、压电晶体生物传感器、半导体生物传感器、光生物传感器、热生物传感器、介体生物传感器。
半导体生物传感器
是由生物分子识别器件(生物敏感膜)与半导体器件结合构成的传感器。目前常用的半导体传感器是半导体光电二极管、场效应管(FET)等。
半导体生物传感器的特点有:
1) 构造简单,便于批量生产,成本低;
2) 它属于固态传感器,机械性能好,抗震性能好,寿命长;
3) 输出阻抗低,便于与后续电路匹配;
4) 可在同一芯片上集成多种传感器,可实现多功能、多参数与计算机的基础。
压电晶体生物传感器
利用压电石英晶体对表面电极区附着质量的敏感性,并结合生物功能分子(如抗原和抗体)之间的选择特异性,使压电晶体表面产生微小的压力变化,引起其振动频率改变可制成压电生物传感器 。它主要由压电晶体、振荡电路、差频电路、频率计数器及计算机等部分组成。
生物传感器的应用
- 通用测试仪器大全之阻抗分析仪(工作原理,特性,使用方法,与相似仪器区别)(04-10)
- LMISI2构成的超声波换能器驱动和接收电路(03-16)
- 常用于医学领域的传感器应用(06-26)
- 可穿戴传感器技术突破有利于精准医疗(02-18)
- 生物传感器的应用详解(02-07)
- 专家揭秘:人体传感网络知多少?(07-16)