微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 诺奖得主笔下的石墨烯蓝图

诺奖得主笔下的石墨烯蓝图

时间:11-09 来源: 点击:

烯纳米带和更多复杂结构的方法。分子束外延已经被用于生长化学纯石墨烯,但是由于成本比CVD法更加高,所以不可能大规模生产。激光烧蚀是一种潜在生长技术,可以让石墨烯纳米片层在任何基材上沉积。但与化学剥离石墨烯的方法相比,其成本较高,所以目前不会广泛应用。

▼表1 不同制备方法得到的石墨烯的性质

4 石墨烯电子器件

由于缺少能带隙,十年内将石墨烯做成高性能集成电路的平面通道材料是不太可能的。然而,其他的一些石墨烯应用正在发展,使用的是一些可用(在质量方面还不是很理想)的材料。图2和表2列出了一些已经应用或即将应用石墨烯基模型所制备的器件。

▲图2 石墨烯基显示器及电子设备

▼表2 石墨烯的电子学应用

4.1 柔性电子器件

导电涂料广泛应用于电子产品中,比如接触屏、电子纸和有机发光二极管和需要低表面电阻和高透过率的特殊应用产品。石墨烯满足电子和光学设备的需要,单层透过率可达97.7%,但是过去认为铟锡氧化物(ITO)的性能会更好一些。然而考虑到每年石墨烯质量的提升,ITO的价格会更高,并且沉积法制备的ITO成本也较高,因此石墨烯肯定会得到一个较大的市场份额。石墨烯优异的柔性和耐腐蚀性是柔性电子材料设备最为重要的性质,然而这方面ITO无法达到。

不同应用的电机所需要的电性能是不一样的(比如表面电阻)。由于生产方法的不同,会有各种不同等级透明的导电涂层。因此,接触屏的电极(需要CVD法制备的产品)在透光率为90%的基础上有着相对较高的表面电导。石墨烯电极在接触面板上的应用的优点在于石墨烯具有更强的稳定性。此外,石墨烯的断裂应变比ITO高10倍,这意味着石墨烯可以应用于可折叠,可弯曲的设备。

可弯曲的电子纸是一种非常吸引人的电子产品。它的弯曲半径在5-10mm,这个要求对于石墨烯而言十分容易达到。并且石墨烯可以吸收可见光,这对于彩色的电子纸而言十分重要。然而石墨烯电极接触电阻和金属的回路仍然是较大问题。具体的应用预计会在2015年前出现,但是在相关应用出现在市场之前必须降低出产成本。

OLED已经成为十分有吸引力的技术,第一个(无石墨烯)产品预计在2013年前可以出现。包括严格控制表面电阻,其他让设备正常运行的关键参数和电极的粗糙度,都会影响其性能。可协调性的石墨烯功能函数可以提高效率,可自动调节的平面可以避免短路和电流泄露。石墨烯电极已经在OLED中应用。一旦设备的集成问题(比如三维石墨烯结构在沉积过程中能否保持和石墨烯之间的接触电阻等)被解决,先进灵活或者可折叠的OLED设备将在2016年后被引入。

在低成本部门,建立大规模生产是最重要的事。液相剥离的石墨烯涂层不需要使用昂贵的真空装置。尽管薄膜的电阻比较高,它们仍然在智能窗口、太阳能电池和一些接触屏的应用上表现良好。石墨烯的柔性和机械强度高的优点,确保了石墨烯设备可以有更多灵活的应用。

4.2 高频晶体管

研究人员已对石墨烯高频二极管进行了研究。石墨烯不得不与成熟的化合物(III–V族元素)半导体材料竞争。当传统的III–V族元素材料不能满足设备的需求时,石墨烯可能会在2021年后被使用。预计III–V族元素不可能超过频率fT=850GHz的临界值(电流调制的上限频率)和最大振动频率fmax=1.2THz(功率调制上限),2021年后对于设备的需求将会更加迫切。最近已经有报道石墨烯的fT可以到达300GHz,当连接长度在100nm左右时也可以延伸至1THz。另一方面根据2011年半导体国际技术路线,传统的石墨烯结构fmax只能达到30GHz,这个数值比硅高频率二极管性能的330GHz相差较远。因此研究的主要目标是石墨烯晶体管较低的fmax。有两种方法可提高fmax:降低栅极阻力或者在夹口处降低循环的电导率。前一种方法可以在成熟的半导体工艺中实现。后一种方法需要在石墨烯高频率晶体管中电流饱和,这可能需要找到一种与氮化硼性能相似,并且能与现代半导体工艺较好相容性的新的绝缘层。在剥离的六方氮化硼薄膜上生长的石墨烯的fmax已经可以达到58GHz。

4.3 逻辑晶体管

目前广泛应用的硅技术已经发展到接近甚至是低于10nm的水平。2020年后石墨烯晶体管也许可以代替硅技术(根据2011年半导体国际技术路线)。

几种研究路线被用于打开石墨烯的能带隙:纳米带,单电子晶体的形成,多层的控制和化学修饰石墨烯。然而,所有的方法(除了化学修饰)都不能打开超过360meV的能带隙,这将开关电流比限制在了103,远远小于需要的106。更为严重的是,这样做会使得石墨烯中载流子的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top