微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 超级电容/电池纲要全解及应用发展趋势

超级电容/电池纲要全解及应用发展趋势

时间:10-16 来源:网络整理 点击:

当超级电容充电时,泄漏电流会随着时间而衰减,因为碳电极中的离子会扩散进入孔隙中。泄漏电流会稳定在一个均衡值,该值取决于电容、电压和时间。泄漏电流与 电容芯成正比。超级电容均衡泄漏电流的经验估计算法为室温下1μA/F。中的150mF电容,在160小时后的泄漏电流为0.2μA和0.3μA。

  泄漏电流随温度升高而呈指数上升。当温度升高时,稳定到均衡值的时间会减小,因为离子扩散的速度更快。因此,这些电容从0V充电需要的时间最小。根据不同的 超级电容,这个电流范围从5μA~50μA。设计者在为能量采集电路挑选超级电容时,应考虑测试这个最小充电电流。

  九、超级电容电池带动风力发电革命

  

  作为新兴储能元件,超级电容具有循环寿命长,充放时间快等特点,在风力发电机狭小的密闭有限空间轮毂控制柜内,超级电容更具有适应温度范围广,体积小容量大,可焊接,维护简单等优点,在风电设备系统中,超级电容不会过充,过放影响寿命,充放电过程仅仅是物理层面上的变化,不会对常年密闭空间作业的轮毂内部造成二次污染,超级电容以保持稳定的直流电压,保证变桨伺服电机的正常运作。

  超级电容的基本工作原理是碳碳双电层原理,存储过程可逆,分析时采用RC模型,包括理想电容C等效串联内阻RESP,等效并联内阻REPR,RESP影响超级电容充放电效率,REPR影响电容自放电,即长期静止存储。存电荷不一样的是,双电层电容器是在电极-电解质表面以静电形式的电荷进行储能。这种储能模式具有快速充电/放电能力、高可靠性和长循环寿命的特点,相对于铅酸蓄电池,对于紧急变桨供电对多变的风况的情况下更具有优势。

  更换了一部分超级电容以后针对于风能随机性强力,环境恶劣,温度湿度变化大,盐雾污秽侵蚀严重等因素对供电模块影响。可以得出超级电容相比铅酸蓄电池更加稳定,实用性和可行性更强 可以预见超级电容的应用在风力发电技术越来越成熟的发展中所占的比例将逐渐上升。所以超级电容做为风力发电机后备电源具有很强的可行性。

  十、超级电容电池变革新能源汽车

  

  超级电容在新能源汽车中主要有三类应用:一是作为动力设备,如上海11路公交即为超级电容大巴,车辆运行中途充电只需30秒,一次充电可行驶5~8公里,既节能环保又兼顾城市景观;二是作为发动机的辅助驱动,在汽车快速启动时提供较大的驱动电流,减少了油耗和不完全燃烧的污染排放;三是对制动能量进行回收利用,当汽车需要加速时,再将这些储存的能量释放出来,提高了能源的使用效率。

  十一、超级电容电池展望有轨电车未来

  

  据不完全统计,目前全球已有超过60个国家、300个城市运营现代有轨电车;国内已有50多个城市开展了有轨电车的规划、建设和运营。国内正在建设的超级电容储能式有轨电车项目:武汉市大汉阳区有轨电车T1线,全长19km,已采购超级电容车辆21列;宁波市鄞州区有轨电车示范线,全长8km,已采购超级电容车辆10列;东莞市松山湖华为工业园区线,全长5km,已采购超级电容车辆5列;深圳市龙华新区有轨电车T1线,全长约12km,计划配超级电容车辆15列;武汉市东湖高新区有轨电车T1/T2线,全长16/19km,计划配超级电容车辆26列;广州2020年前规划约500公里有轨电车线网,计划配超级电容车辆约500列等等。国外及港澳台正在建设的超级电容储能式有轨电车项目:台湾高雄有轨电车环线,全长22km,已采购超级电容车辆约30列(CAF);卡塔尔多哈有轨电车线,全长12km,已采购超级电容车辆18列(SIEMENS)。

  目前已经运营或试运行的超级电容储能式有轨电车有:广州海珠(7.7km,已运营);江苏淮安(20.3km试运行)。

  全球首条超级电容储能式现代有轨电车运营线-广州海珠线运行情况:运营时间: 9:00-21:00;上线数量: 工作日4+1列,周末6+1列;运营里程:230公里(每列15个往返);旅行速度: 24km/h,7.7km单程19分;正点率: 99.87%;每日客流:最高日超2万张票(7列车);车辆电耗:《3度/公里↓30%。

  超级电容储能式有轨电车已逐步融入了城市文化,它已经不仅仅是一种交通工具,而是一种新的生活方式。

  十二、超级电容电池助力混动力汽车发展

  

  HEV的由来,一个方面是从能源危机,另一方面是环境污染,再一个就是国家相关政策,从这几个方面提出了混合动力需求。HEV的分类现在有不同的方法,上午和下午也介绍了不少。工作原理,我不是专业的,就不多介绍,主要还是契合主题,讲我们的钛酸锂电池和超级电容器。

首先要知道HEV的使用特点,目前HEV的使用特点

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top