微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 碳化硅电力电子器件的发展现状分析

碳化硅电力电子器件的发展现状分析

时间:07-22 来源:互联网 点击:

进的IGBT、pin二极管模块作比较:在同等功率等级下(25A/600V),面积减少到60%,该模块旨在减小通态损耗以及开关损耗以及功率回路当中的过压过流。

  3 SiC MOSFET器件实用化取得突破

  碳化硅MOSFE一直是最受瞩目的碳化硅开关管,它不仅具有理想的栅极绝缘特性、高速的开关性能、低导通电阻和高稳定性,而且其驱动电路非常简单,并与现有的电力电子器件(硅功率MOSFET和IGBT)驱动电路的兼容性是碳化硅器件中最好的。

  SiC MOSFET器件长期面临的两个主要挑战是栅氧层的长期可靠性问题和沟道电阻问题。其中沟道电阻大导致导通时的损耗大,为减少导通损耗而降低导通电阻和提高栅氧层的可靠性的研发一直在进行。降低导通电阻的方法之一是提高反型沟道的载流子迁移率,减小沟道电阻。为了提高碳化硅MOSFET栅氧层的质量,降低表面缺陷浓度,提高载流子数量和迁移率,一种最通用的办法是实现生长界面的氮注入,也被称为界面钝化,即在栅氧层生长过程结束后,在富氮的环境中进行高温退火,这样可以实现沟道载流子迁移率的提高,从而减小沟道电阻,减小导通损耗。降低导通电阻的方法之二是采用在栅极正下方开掘沟槽的沟槽型栅极结构。目前已经投产的SiCMOSFET都是"平面型"。平面型在为了降低沟道电阻而对单元进行微细化时,容易导致JFET电阻增大的问题,导通电阻的降低方面存在一定的局限性。而沟槽型在构造上不存在JFET电阻。因此,适于降低沟道电阻、减小导通电阻,但是Si沟槽型MOSFET目前尚未解决沟槽刻蚀之后侧壁沟道的表面问题。

  美国Cree和日本Rohm公司已经能提供业界领先的碳化硅的MOSFET器件。美国已经将碳化硅MOSFET器件应用于开发2.7MVA的固态功率变电站,该固态功率变电站可能将被应用于美国下一代航空母舰CVN-21的配电系统中。采用全碳化硅功率模块,可以使传统的低频(60Hz)变压器转变为高频(20kHz)固态功率变电站,预计使变压器的重量由6吨降低到1.7吨,体积从10立方米降低到2.7立方米,大大提高舰船系统的性能。2012年,日本三菱电机通过使用碳化硅制造的MOSFET和肖特基二极管,研发出一个达11kW逆变器,它比基于硅器件制造的逆变器,降低能源损耗达七成,输出功率为10W/cm3。日本三菱电机报道了使用强制风冷的三相400V输出全碳化硅逆变器,采用了碳化硅JFET和碳化硅肖特基势垒二极管,这套装置的功率密度达到了50kVA/升,远高于传统的硅基装置。2013年3月美国Cree发布第2代SiC MOSFET。与第1代产品相比,通过缩小芯片面积等手段压缩了成本。以耐压为1.2kV的品种为例,第2代芯片面积比第1代缩小了约40%。

  4 SiC IGBT器件

  由于受到工艺技术的制约,碳化硅IGBT的起步较晚,高压碳化硅IGBT面临两个挑战:第一个挑战与碳化硅MOSFET器件相同,沟道缺陷导致的可靠性以及低电子迁移率问题;第二个挑战是N型IGBT需要P型衬底,而P型衬底的电阻率比N型衬底的电阻率高50倍。因此,1999年制成的第一个IGBT采用了P型衬底。经过多年的研发,逐步克服了P型衬底的电阻问题,2008年报道了13kV的N沟道碳化硅IGBT器件,比导通电阻达到22mΩ×cm2。有报道对15kV的N-IGBT和MOSFET的正向导通能力做了一个比较,结果显示,在结温为室温时,在芯片功耗密度为200 W/cm2以下的条件下,MOSFET可以获得更大的电流密度,而在更高的功耗密度条件下,IGBT可以获得更大的电流密度。在结温为127?C时,IGBT在功耗密度为50 W/cm2以上的条件下就能够导通比MOSFET更高的电流密度。同一年,该团队还报道了阻断电压达到12 kV的P沟道碳化硅IGBT,导通比电阻降到了14mΩ×cm2,体现了明显的电导调制能力。

  碳化硅 IGBT器件的优势应用范围为10kV以上的高压领域。在这一领域中,碳化硅MOSFET器件会面临通态电阻过高的问题,但是在10kV以下的应用中,碳化硅IGBT 相对于碳化硅MOSFET 的优势并不十分明显。在15 kV以上的应用领域,碳化硅IGBT综合了功耗低和开关速度快的特点,相对于碳化硅的MOSFET以及硅基的IGBT、晶闸管等器件具有显着的技术优势,特别适用于高压电力系统应用领域。新型高温高压碳化硅IGBT器件将对大功率应用,特别是电力系统的应用产生重大的影响。可以预见的是,高压碳化硅IGBT器件将和PiN二极管器件一起,成为下一代智能电网技术中电力电子技术最核心的器件。

  5 SiC 功率模块

碳化硅功率模块是全球电力电子器件大型企业目前重点的发展方向。碳化硅功率模块已经在一些高端领域实现了初步应用,包括高功率密度电能转换、高性能电机驱动等等,并具有广阔

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top