微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 振荡电路的工作原理及其特性,附设计集锦

振荡电路的工作原理及其特性,附设计集锦

时间:11-28 来源:网站整理 点击:

率成为零。

  在高频率振荡电路中,除了上述特性以外,尚要考虑到在设计时的频率可变范围以及振荡频率范围

  3频率稳定度

  振荡电路特性的良否,是由频率稳定度决定的,此为振荡器的重要特性。关于频率的变动可以用以下数值表示之。

  频率:经过时间的变动

  电源ON后,随着时间的经过,所产生的频率变动。特别是,在热机(warm-up)时的变动最大。

  频率温度系数

  相对于温度变化时的频率变动,用ppm/℃表示。

  频率:电源电压变动

  电源电压变化时的频率变动,用%/V表示。

  我们知道振荡电路由四部分组成,分别是放大电路、正反馈网络、选频网络和稳幅电路。我们在分析振荡电路的工作原理时,应该先检查电路的各个环节是否完善,其次还要检查放大电路的静态工作点是否正确,放大电路能否正常工作,然后分析电路是否满足自激振荡条件。只有各个方面都检查确认后,我们再来分析振荡电路的共作原理就会比较容易理解了。

  振荡电路的设计集锦

  压控振荡电路的设计

  方案一:分立器件组成的压控振荡器

  串联谐振电容三点式电路(又称克拉泼电路)具有输出波形、稳定性较好,频率调节较为方便。压控晶体振荡器由于晶体的Q值高、老化效应小和温度系数较小等特点,而具有较高的短期和长期频率稳定度。压控晶体振荡器调谐的范围在数量级,调谐范围很窄。为扩大压控晶体振荡器的调谐范围,常采用串联压控晶体振荡器和在晶体上并接电感等方法,但都以牺牲振荡器频率稳定度为代价。

  这两种方法电路结构比较简单,成本不高,但是调试不太方便,稳定性不是很好。

  

  方案二:积分-施密特触发器型压控振荡器

  该类电路属于低频宽带通用形压控多谐振荡器。其中心频率通过外接定时电容和电阻实现,电源电压范围较宽,优点是线形度好,可控范围宽,缺点是频率稳定度底,易受温度和电源电压变化的影响,最高工作频率只1MHz左右。

  方案三:射级耦合多谐振荡型压控振荡器

  该类集成电路采用二极管作负载,Ud较小,采用对称结构的三极管工作在共基接法,直接耦合正反馈较强,振荡频率较高,压-频特性较好,且调整方便,输出最高频率可达155MHz。

  方案四:LC负阻型压控振荡器

  这种振荡器有众多的集成电路存在,由于采用ECL工艺,所以最高工作频率可以达到几百MHz,且电路简单,稳定性好,调试方便。比较以上四种方案,从电路结构、稳定性、频率上限、调试难易程度、构建系统的费用等方面比较,方案四明显优于另三套方案。实现方案四的集成电路很多,在此,作者采用 Motorala公司生产的LC负阻

  型压控振荡器MC1648,该芯片的使用较为广泛,购买比较方便。其外部电路结构简单、稳定性好,故本系统采用采用这种结构。

  电路设计

  MC1648是单片集成的射极耦合振荡器,输出MECL电平。电路工作时,外接电感L和电容C的并联谐振回路即可形成固定频率的振荡器。若外接变容二极管,控制变容管的直流偏置即可构成LC压控振荡器。MC1648的工作电源为5v或负5.2V。最高工作频率可达225MHz.几种常见的变容管连接方式和相应的压控特性见下图,其中(a)(b)为单管连接,控制电压加到变容管,其作用是限流。(c)采用双管背对背连接,其工作频率高,压控特性也好,本系统采用此种结构。电路的5端为AGC。改变AGC的电位,则振荡幅度改变,经放大输出的波形也不一样。通过AGC调节,电路可以输出正弦波,也可以输出方波。

  

  振荡器是系统产生频率的关键,决定着输出波形是否失真,以及输出幅度的大小。因为是高频电路,所以对电源的要求比较高,常需要对电源进行处理才能,比如加电感电容来滤波,既可以防止工频变压器对振荡器的干扰,也可以防止振荡器通过电源对其他电路的干扰。在进行这些处理后,一般还要加金属屏蔽外罩,才有更好的效果。 根据选用的变容二极管2CC12B,其最大工作频率为50MHz,由于采用较合适的结构设计,本系统实际工作频率为8~68MHz,输出频率范围达 60MHz,但是要通过改变电感来实现。

  

  555多谐振荡的基本电路

用555时基电路可组成各种形式的自激式多谐振荡器,其基本电路如图a所示。当电路刚接通电源时,由于C来不及充电,555电路的②脚处于零电平,导致其输出③脚为高电平。当电源通过RA、RB向C充电到Vc≥Vcc时,输出端③脚由高电路平变为低电平,电容C 经RB和内部电路的放电开关管放电。当放电到Vc≤Vcc时,输出端又由低电平转变为高电平。此时电容再次充电,这种过程可周而复始地进行下去,形成自激振荡。图(b)给出了输出端及电容器C上电压

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top