微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 你必须要懂的示波器幅频特性曲线

你必须要懂的示波器幅频特性曲线

时间:05-30 来源:鼎阳科技 点击:

。在大学实验教学中有这样的实验项目来要求学生绘制幅频特性曲线。

  但是一谈到"计量"这个词,人们就会陷入鸡和蛋的深渊。该"相信"谁?相信信号源的输出幅值还是相信示波器测量的结果? 溯源是关键。 幅频特性曲线的"计量"需要正弦波信号源(高频时使用射频信号源),需要计量过的电缆,计量过的功分器,计量过的功率计。使用功率计是因为从计量上来说并不"相信"信号源的读数输出,而是相信功率计,因为功率计的精度远远大于示波器。使用功率计只是保证在低频和高频时的功率是一样的,并不是将功率计的结果和示波器的结果进行逐一比较。专用的示波器检测仪器的探头上带有功率计,保证了信号源输出功率的一致,就不需要功分器了。具体计量时的连接示意图如图3所示。

  

  图3 示波器幅频特性曲线的计量连接示意图

  完成这样连接之后,有一种快速了解示波器的幅频特性是否满足要求的方法是,查看低频时和高频时的示波器的幅度差别是否在-3dB以内,譬如在低频时信号占满示波器的6格,在高频时应占满4.2格。

  幅频特性曲线的计量和示波器的垂直量程有关,不同的量程得到的幅频特性曲线不一样,因此,需要计量不同量程时的幅频特性曲线; 和采样率有关,因为采样率会影响到幅值测量的准确性,一般要将采样率设置为最大; 和连接信号源与示波器接口之间的电缆有关,因为高频时存在衰减和反射问题,和输入信号的幅值大小有关,因此要用功率计来保证不同频率时的输出功率相同; 和示波器的输入通道有关,不同输入通道相同量程下的的幅频特性曲线可能不一样。

  考虑到计量科学的严谨性,还有几个细节问题需要讨论:

  (1) 不同量程下输入正弦信号的幅值如何定义?

  标定在不同量程下的幅频特性曲线需要输入不同幅值的正弦波信号,否则对于有些量程,波形会超出示波器屏幕,而有些量程下波形只占屏幕的一小部分,量化误差很大。

  输入信号的幅值大小一般以尽量占满栅格为准。据说有规范上要求是以低频时占满栅格的6格为准。具体做法就是:在输入很低频率时调节信号源的输出幅值,使信号占满6格,用功率计测量此时信号的功率,然后逐渐增加频率,在每一个频率点都用功率计标定,确保输入到示波器输入端口的能量始终是相同的,然后再测量每个频率点的幅值。

  (2) 幅频特性曲线的纵坐标的测量参数该使用示波器测量的幅值,峰峰值还是标准偏差值?

  这个问题似乎不应该讨论,但却一直在小范围内争论不休,没有结论。有的计量专家要求是以幅值为准,也有专家认为用峰峰值更合适,但也有认为最合理的是用标准偏差(sdev)。对于低带宽示波器,其实不管采用哪个测量参数,因为裕量比较大,争议比较少,但在高端示波器,采样率不是特别大的情况下,测量峰峰值和幅值的差别会比较大。但是,对于现在有些低带宽示波器,譬如在100MHz带宽下,采样率只有250MS/s,计量时用幅值或峰峰值的影响也一样很大。

  采用幅值的方法被称为众数法,就是以正弦波的顶部和底部出现概率最大的位置作为测量的依归,如图4所示top和base的算法原理。 这样会去掉了顶部的一些样本,以略低于顶部的位置来读数。但是峰峰值却可能把随机噪声也采样进去。 笔者认为采用sdev更合理,但是这个测量参数不能被采纳为计量标准,因为有些低端示波器并没有sdev这个测量参数。

  

  图4 幅值算法的来源

  (3) 是将实时采样率设置为最大,还是等效采样率设置为最大?

  如果按照现在有些专家坚持采用幅值来作为计量依据,根据图4的算法,幅值的测量精度强烈依赖于采样样本数的大小。如果采用等效采样方式,可以在顶部和底部通过等效采样的算法原理"产生"更密集的样本,虽然这些样本并不一定完全代表真实样本,这对于计量中使用信号源输出的正弦信号信号未必也不是一种好方法。 但是由于等效采样毕竟不是完全代表真实的样本信息,该方法也并没有被专家们采纳。

  (4) 是否可以采用正弦插值,插值多少个点是允许的?

  在实时采样前提下采用正弦插值同样会增加幅值测量的准确性。笔者了解到正弦插值是可以被接受的,但是具体插值的样本数的数量目前在计量界也没有统一的说法。示波器打开正弦插值时默认的插值样本数对于不同型号的示波器并不一样,但是插值的样本数量会影响到幅值测量精度。不同的插值样本数可能带来计量结果上的些微偏差。

  (5) 带宽范围以内的幅频特性曲线和理想曲线之间的偏差,光滑度如何定义?

这个问题揭示了示波器测量的一个最大的误差来源。在示波器行业,并没有一个规范来要求示波器的幅

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top