微波EDA网,见证研发工程师的成长! 2025婵°倗濮烽崕鎴﹀箯閿燂拷01闂備礁鎼悧鐐哄箯閿燂拷16闂備礁鎼崰娑㈠箯閿燂拷 闂備礁鎼€氼噣宕伴幇顒婅€块柨鐕傛嫹闂備焦鎮堕崕濠氬箯閿燂拷
首页 > 硬件设计 > 硬件工程师文库 > 基于多路单端反激式开关电源的设计方案

基于多路单端反激式开关电源的设计方案

时间:09-10 来源:互联网 点击:

产生至关重要的影响。高频变压器磁芯只工作在磁滞回线的第一象限。在开关管导通时只储存能量,而在截止时向负载传递能量。因为开关频率为100 kHz,属于比较高的类型,所以选择材料时选择在此频率下效率较高的铁氧体,由:

  闂備礁鎲″缁樻叏閹灐褰掑炊閵娧€鏋栭梺璺ㄥ櫐閹凤拷...

  估算磁芯有效截面积为0.71 cm2,根据计算出的Ae 考虑到阈量,查阅磁芯手册,选取EE2825,其磁芯长度A=28 mm,有效截面积SJ=0.869 cm2,有效磁路长度L=5.77 cm,磁芯的等效电感AL=3.3 μH/匝2,骨架宽度Bw=9.60 mm.

  3.4.2 初级线圈的参数

  (1)最大占空比。根据式(1),代入数据:宽范围输入时,次级反射到初级的反射电压VoR 取135 V,查阅TOP223Y数据手册知MOSFET导通时的漏极至源极的电压VDS=10 V,则:

  闂備礁鎲″缁樻叏閹灐褰掑炊閵娧€鏋栭梺璺ㄥ櫐閹凤拷...

  (2)设置KRP .KRP= IR IP ,其中IR为初级纹波电流;IP为初级峰值电流;KRP用以表征开关电源的工作模式(连续、非连续)。连续模式时KRP小于1,非连续模式KRP大于1.对于KRP的选取,一般由最小值选起,即当电网入电压为100 VAC/115 VAC或者通用输入时,KRP=0.4;当电网输入电压为230 VAC时,取KRP=0.6.当选取的KRP较小时,可以选用小功率的功率开关,但高频变压器体积相对要大,反之,当选取的KRP较大时,高频变压器体积相对较小,但需要较大功率的功率开关。对于KRP的选取需要根据实际不断调整取最佳。

  (3)初级线圈的电流初级平均输入电流值(单位:A):

  闂備礁鎲″缁樻叏閹灐褰掑炊閵娧€鏋栭梺璺ㄥ櫐閹凤拷...

  可知,KRP 选取合适。TOPSwitch器件的选择遵循的原则是选择功率容量足够的最小的型号。

  (4)变压器初级电感

  闂備礁鎲″缁樻叏閹灐褰掑炊閵娧€鏋栭梺璺ㄥ櫐閹凤拷...

  3.4.3 初级次级绕组匝数

  当电网电压为230 V和通用输入220 V时:每伏特取0.6匝,即KNS=0.6.由于输出侧采用较大功率的肖特基二极管用作输出整流二极管,因此VD取0.7 V,磁芯的最大工作磁通密度在BM在2 000~3 000 GS范围内。偏置二极管VDB的压降取0.7 V,偏置电压VB取12 V.

  初级绕组匝数:

  闂備礁鎲″缁樻叏閹灐褰掑炊閵娧€鏋栭梺璺ㄥ櫐閹凤拷...

  3.5 输出整流滤波电路

  由整流二极管、滤波电容和平波电感组成。将次级绕组的高频方波电压转变成脉动的直流电压,再通过输出滤波电路滤除高频纹波,使输出端获得稳定的直流电压。肖特基二极管正向导通损耗小、反向恢复时问短,在降低反向恢复损耗以及消除输出电压中的纹波方面有明显的性能优势,所以选用肖特基二极管作为整流二极管,参数根据最大反向峰值电压VR选择,同时二极管的额定电流应该至少为最大输出电流的3~5倍。次级绕组的反向峰值电压VSM为:

  闂備礁鎲″缁樻叏閹灐褰掑炊閵娧€鏋栭梺璺ㄥ櫐閹凤拷...

  式中:Iout是输出端的额定电流,单位为A;Dmin是在高输入电压和轻载下所估计的最小占空比(估计值为0.3);V(PK-PK)是最大的输出电压纹波峰峰值,单位为mV.计算得出后考虑阈值C6取100 μF/10 V,C8取220 μF/35 V.

  第二级经LC滤波使不满足纹波要求的电压再次滤波。输出滤波电容器不仅要考虑输出纹波电压是否可以满足要求,还要考虑抑制负载电流的变化,在这里可以选择C7取22 μF/10 V,C9取10 μF/35 V.C5取经验值0.1 μF/25 V.输出滤波电感根据经验取2.2~4.7 μH,采用3.3 μH 的穿心电感,能主动抑制开关噪声的产生。

  为减少共模干扰,在输出的地与高压侧的地之间接共模抑制电容C15.

  3.6 反馈回路设计

  开关电源的反馈电路有四种类型:基本反馈电路、改进型基本反馈电路、配稳压管的光耦反馈电路、配TL431的光耦反馈电路。本设计采用电压调整率精度高的可调式精密并联稳压器TL431加线形光耦PC817A构成反馈回路。

  TL431通过电路取样电阻来检测输出电压的变化量ΔU,然后将采样电压送入TL431 的输入控制端,与TL431的2.5 V参考电压进行比较,输出电压UK也发生相应变化,从而使线性光电耦合器中的发光二极管工作电流发生线性变化,光电耦合器输出电流。

  经过光电耦合器和TL431组成的外部误差放大器,调节TOP223Y控制端C 的电流IC,调整占空比D(IC与D成反比),从而使输出电压变化,达到稳定输出电压的目的。

  对于电路中的反馈部分,开关电源反馈电路仅从一路输出回路引出反馈信号,其余未加反馈电路。这样,当5 V输出的负载电流发生变化时,定会影响12 V输出的稳定性。

  解决方法是给12 V输出也增加反馈电路。另外,电路中C10为TL431的频率补偿电容,可以提高TL431的瞬态频率响应。R5为光电耦合器的限流电阻,R5的大小决定控制环路的增益。电容器C13为软启动电容器,可以消除刚启动电源时芯片产生的电压过冲。

  下面主要是确定R4~R8的值:

按照应用要求,对5 V电源要求较高,但也要兼顾12 V电源,权衡反馈量,将R7,R8的反馈权值均设置为0.6,0

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top