微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 电池续航力不够?让我们一起创新PMIC设计技术吧!

电池续航力不够?让我们一起创新PMIC设计技术吧!

时间:08-06 来源:Dialog公司 点击:

降低开发风险。当然,对于OEM很重要的一点,在于是否有能力量身订製平台,针对市场需求开发差异化产品。

  业界推出一颗可高度配置的PMIC,能让供应商在设计智慧型手机的平台,以及在整个产品的生命週期中针对不同市场需求推出多款机种与设计时,能够更加具有弹性。在研发流程中,当额外的功能被增添至智慧型手机平台上时,它能在电路板设计中支援后期变更。这也有助于降低PMIC库存,并满足消费性电子市场对于数量弹性的需求。对于新手机供应商而言,这种与SoC供应商合作而享有的量身订製特性,可形成巨大的优势。

  PMIC协调多核心装置流程

  现今绝大多数的智慧型手机採用单核及双核的系统单晶片,高阶产品则有少许的四核心机种,平板电脑市场大多亦是如此。不过,较大的功率需求(被动式冷却装置需4瓦(W),具有风扇的系统则需求7?8瓦,相比之下,智慧型手机则仅需1瓦左右)意味着处理器将朝向更高核心数发展。

  有些人对于多核心行动运算装置的需求产生质疑。这的确是实情,今日市场上销售的个人电脑大多有着双核心中央处理器(CPU),因为大多数软体应用程式仅有着单一执行绪而不是多重执行绪,因此无法在多核心中运作,供行动装置所用的软体甚至更不适合于多执行绪。

  儘管如此,来自于多核心装置的功率优势却相当显着。多核心装置将简单的任务指派给一颗核心,同时将更复杂的任务、需要较多功率的任务导向其他的核心。每一个四核心或是八核心的应用处理器必须以特定的顺序从休眠状态中启动以及关机。PMIC扮演着如同系统传导者的角色,告知每一个基频或是应用处理器装置中的个别电路方块,何时须被唤醒以及何时必须进入休眠状态以节省能量。大多数的工作负载依然是单一执行绪,并且需要在高频下运作,所以系统单晶片必须能够有效率的提供总处理能力及单核心效能。

  安谋国际(ARM)标示为big.LITTLE的异构核心,将一个小型但高效的核心与较大且较复杂的核心搭配在一起,并且可以在两者之间切换。行动装置必须要透过高效的电源管理解决方案降低切换所造成的功率损耗。简而言之,若每一个电路方块都要同时处在高效能模式,则将无法具备足够的功率或散热能力。当执行一款高度真实感及具互动性的游戏时,显示萤幕与图形处理器(GPU)将会使用大部分的功率;这时CPU必须降低频率与电压,以便于提供最佳整体效能。假如这时也出现明显的无线数据流量时,一切将变得更为复杂。最终的结果就是,必须要有一颗先进的PMIC来处理这些流程的切换。

  LTE与功率效能挑战

  LTE智慧型手机也带来功率效能上的挑战。现今的数位模组技术可以将更多的资料位元压缩至每一个射频(RF)频道,其结果是造成更为复杂的波形,同时有着较高的波峰因素(Crest Factor),波峰因素是指波峰相对于平均功率比值(Peak-to -average-power-ratio, PAPR)。

  LTE讯号有着非常高的波峰因素(一般而言是7.5?8dB PAPR),导致发射器必须具有较高的峰值功率需求。传统的固定电压功率放大器(PA)在处于发射波形的波峰时,且处于压缩状态下时,具有极佳的能源效率。假如设计工程师倾向于使用可以逐渐增加的较大型供应电压功率放大器时,许多的能量将被浪费掉,同时在下次电池充电之前,LTE装置的可利用时间可能会降低到1个小时之内。

  为将功率效能最佳化,必须使用两颗辅助PMIC管理智慧型手机上较为复杂的电压与电流需求。封包追踪(Envelope Tracking)也是一项新兴且有潜力的电源供应技术,可用来改善LTE行动电话的无线频率功率放大器(Radio Frequency Power Amplifier)的能源效率。它以动态的供应电压取代无线频率功率放大器供应固定的直流电压,如此一来可以更密切的追踪振幅,或是发射无线频率讯号的封包。

  封包追踪技术的目标,在于改善功率放大器承载较高波峰平均功率比讯号的效率。要在有限的频谱资源内提供高资料处理能力,必须使用有着较高波峰平均功耗比的线性模组。很不幸的是,传统电压源固定的功率放大器,在这些情况下运转时效率都较低。在封包追踪的功率放大器中,可藉由改变功率放大器供应电压,与无线频率讯号的封包同步,进而改善其效率。

  节省电路板空间 PMIC整合音讯芯片

OEM也面临节省电路板空间的压力,他们必须释放出更多的面积以容纳新功能,同时还要维持装置的轻薄短小并降低成本。针对这些目标,叁维(3D)封装或是晶片堆叠技术的使用能产生优势。一般而言,晶片堆叠是利用低密度接线或銲锡凸块连接不同堆叠层。业界在单一封装中整合或堆叠完全可配置

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top