微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 工程师解读:为什么工业传感器会出错?

工程师解读:为什么工业传感器会出错?

时间:07-09 来源:电子发烧友网 点击:

输出电压(范围通常为数十µV)。因此,你需要设计出具有使用不同增益放大热电堆输出电压功能的电子支持组件。可以通过一个含内置PGA的模拟前端(AFE)来处理这种情况。要求使用数百到数千V/V范围的增益设置,来把小热电堆信号放大到系统全刻度模数转换器(ADC),从而实现最大系统精确度。

  NDIR系统设计的另一个因素是知道如何处理热电堆传感器相关的显著偏移电压。热电堆会有一个大于实际信号的偏移分量(高达1mV),其限制了系统的动态范围。把这种问题降至最小程度的一种方法是,在系统的电子组件中集成偏移补偿。一种解决方案是,使用一个数模转换器(DAC)对被测偏移进行补偿。系统微控制器(µC)可以捕获偏移水平,并通过对DAC编程让输出趋向负轨即零刻度来消除这种偏移。这种解决方案利用ADC的全部动态范围,最小化了ADC分辨率要求。

  另外,由于存在热电堆偏移电压,需要把热电堆偏置至接地以上。你可以通过利用一个共模生成器,向传感器施加一个共模电压,完成这项工作。这样可以把热电堆传感器信号电平位移至负轨以外,从而允许精确地检测传感器偏移电压的存在。

  另外,NDIR系统需要一个基准通道、可调节放大、偏移补偿和偏置。LMP91051可以满足这些要求,它是NDIR检测应用的可配置传感器AFE(请参见图5)。它拥有一个双通道输入,可支持有源基准通道、PGA、可调节偏移抵消DAC以及共模生成器。LMP91051集成了这些重要的NDIR系统模块,降低了设计时间,并减少了板级空间占用、功耗和成本。

  图5 用于NDIR检测的LMP91051可配置传感器AFE

  一个pH电极测量氢离子(H+)活跃性,并产生一个电位,即电压。pH电极的工作原理是:pH值不同的两种液体在薄玻璃隔膜的两边接触时形成电位。这些pH电极利用相同的原理来测量各种应用的pH值,包括水处理、化学处理、医学仪器和环境测试系统等。

  pH电极是一种无源传感器,其意味着无需激励源(电压或者电流)。但是,它是一种双极传感器,它的输出可以围绕基准点上下摆动。因此,在一个单电源系统中,传感器需要参考共模电压(通常为半电源),以防止其轨接地。

  由于薄玻璃壳具有很大的电阻(范围通常为10 MOhm到1000 MOhm),因此pH电极的源阻抗非常高。这意味着,只能通过一个高阻抗测量电路来监测电极。另外,该电路应具有低输入偏置电流,因为即使注入高阻抗电极的电流极小,也会形成明显的偏移电压,并给系统带来测量误差。另外,即使系统关闭,随着时间的推移,pH电极所吸的电流也可能会使传感器老化。因此,即使在未向测量电路供电时,也应维持低输入偏置电流,这一点很重要。

  pH电极产生的电压输出线性依赖于解决方案的被测pH。图6和图7所示传输函数和pH刻度表明,当解决方案的pH增加时,pH测量电极产生的电压降低。注意,pH电极的灵敏度随温度而变化。观察pH电极传输函数曲线,我们可以看到,灵敏度随温度上升而线性上升。由于这种特性的存在,了解解决方案的被测温度,并对测量进行相应的补偿至关重要。

  

  图6 pH电极传输函数

  

  图7 pH刻度

  最后,pH传感器要求高阻抗、低输入偏置电流接口、共模电压和温度补偿功能。用于化学检测的LMP91200传感器AFE可以满足以上要求(请参见图8)。通过其可编程电流源,你可以轻松地连接RTD。利用多级温度测量功能,消除了温度信号路径的误差,从而进一步增强了温度测量精确度。25°C下时,这种器件的输入偏置电流范围仅为数十fA,最小化了连接高阻抗pH电极时的误差。最终,器件关闭时偏置电流仅为数百fA,从而把长时间电流消耗带来的电极老化降至最低。

  

  图8 用于化学检测的LMP91200可配置传感器AFE

  我们讨论了一些与工业传感器相关的最为普遍的设计挑战。这些挑战包括激发、增益、温度补偿、偏移抵消、电流到电压转换、高阻抗接口和诊断电路等。使用一个正确的AFE,可在降低设计复杂程度的同时提高测量精确度。

  市场上,有许多可配置和易用型传感器AFE供我们选择。在TI,这些器件与在线设计工具"WEBENCH Sensor AFE Designer"结合使用。这种设计工具让广大系统设计人员可以开发出高性能的集成传感器系统,并同时缩短产品上市时间。

  作者:Jason Seitz,德州仪器 (TI)

Jason Seitz现任 TI 传感器信号路径产品部主任应用工程师,主要负责高精度、低功耗及低压模拟系统方面的工作。Seitz 毕业于加州大学戴维斯分校 (University of California at Davis),获电子工程理学士学位,后在圣塔克拉拉大学(Santa

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top