微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 浅析有源功率因数校正技术及发展趋势

浅析有源功率因数校正技术及发展趋势

时间:04-28 来源:互联网 点击:

流不连续,采用固定占空比的方法,电流自动跟随电压。这种控制方法一般用在输出功率比较小的场合,另外在单级功率因数校正中多采用这种方法,后面会介绍。波形图如图4(d)所示。

  3.3 其他控制方法

  3.3.1 非线性载波控制技术

  非线性载波控制(NLC)不需要采样电压,内部电路作为乘法器,即载波发生器为电流控制环产生时变参考信号。这种控制方法工作在CCM模式,可用于Flyback,Cuk,Boost等拓扑中,其调制方式有脉冲前沿调制和脉冲后沿调制。

  3.3.2 单周期控制技术

  单周期控制原理图如图5所示,是一种非线性控制技术。该控制方法的突出特点是,无论是稳态还是暂态,它都能保持受控量 (通常为斩波波形)的平均值恰好等于或正比于给定值,即能在一个开关周期内,有效地抑制电源侧的扰动,既没有稳态误差,也没有暂态误差,这种控制技术可广泛应用于非线性系统的场合,不必考虑电流模式控制中的人为补偿。

  3.3.3 电荷泵控制技术

  利用电流互感器检测开关管的开通电流,并给检测电容充电,当充电电压达到控制电压时关闭开关管,并同时放掉检测电容上的电压,直到下一个时钟脉冲到来使开关管再次开通,控制电压与电网输入电压同相位,并按正弦规律变化。由于控制信号实际为开关电流在一个周期内的总电荷,因此称为电荷控制方式。

  4 功率因数校正技术的发展趋势

  4.1 两级功率因数校正技术的发展趋势

  目前研究的两级功率因数校正,一般都是指Boost PFC前置级和后随DC/DC功率变换级。如图6所示。对Boost PFC前置级研究的热点有两个,一是功率电路进一步完善,二是控制简单化。如果工作在PWM硬开关状态下,MOSFET的开通损耗和二极管的反向恢复损耗都会相当大,因此,最大的问题是如何消除这两个损耗,相应就有许多关于软开关Boost变换器理论的研究,现在具有代表性的有两种技术,一是有源软开关,二是无源软开关即无源无损吸收网络。

  

  

  有源软开关采用附加的一些辅助开关管和一些无源的电感电容以及二极管,通过控制主开关管和辅助开关管导通时序来实现ZVS或者ZCS。比较成熟的有ZVT —Boost,ZVS—Boost,ZCS—Boost电路等。虽然有源软开关能有效地解决主开关管的软开关问题,但辅助开关管往往仍然是硬开关,仍然会产生很大损耗,再加上复杂的时序控制,使变换器的成本增加,可靠性降低。

  无源无损吸收则是采用无源元件来减小MOSFET的dv/dt和二极管的dv/dt,从而减小开通损耗和反向恢复损耗。它的成本低廉,不需要复杂的控制,可靠性较高。

  除了软开关的研究之外,另一个人们关心的研究方向是控制技术。曰前最为常用的控制方法是平均电流控制,CCM/DCM临界控制和滞后控制3种方法。但是新的控制方法不断出现,其中大部分是非线性控制方法,比如非线性载波技术和单周期控制技术。这些控制技术的主要优点是使电路的复杂程度大大降低,可靠性增强。现在商业化的非线性控制芯片有英飞凌公司的一种新的CCM的PFC控制器,被命名为ICElPCSOI,是基于一种新的控制方案开发出来的。与传统的 PFC解决方案比较,这种新的集成芯片(IC)无需直接来自交流电源的正弦波参考信号。该芯片采用了电流平均值控制方法,使得功率因数可以达到1。另外,还有IR公司的IRIS51XX系列,基于单周期控制原理,不需要采集输入电压,外围电路简单。

  最后,怎样提高功率因数校正器的动态响应是当前摆在我们面前的一个难题。

  4.2 单级功率因数校正技术的发展趋势

  在20世纪90年代初提出了单级功率因数校正器,主要是将PFC级和DC/DC变换级集成在一起,两级共用开关管。如图7所示。它与传统的两级电路相比省掉了一个MOSFET,增加了一个二极管。另外,其控制采用一般的PWM控制方式,相对简单。但是单级功率校正存在一个非常严重的问题:当负载变轻时,由于输出能量迅速减小,但占空比瞬时不变,输入能量不变,使得输入功率

  大于输出功率,中间储能电容电压升高,此时占空比减小以保持DC/DC级输出稳定,最终达到一个新的平衡状态。这样中间储能电容的耐压值需要很高,甚至达到1000V。当负载变重时,情况相反。怎样降低储能电容卜的电压是现在单级功率因数校正研究的热点。

  

  4.3 常用的功率因数校正芯片

  4.3.1 非连续电流模式PFC芯片

  IFX(英飞凌) TDA4862、TDA4863

  ST L6561、L6562

  Fairchield(快捷半导体) FAN7527

  TI UC3852、UCC38050

  SC SG6561

  ON MC33262、MC34262、MC33261

  4.3.2 连续电流模式PFC芯片

IFX TDAl6888

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top