微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 使用超声多普勒方法完成管道流量测量研究(全)

使用超声多普勒方法完成管道流量测量研究(全)

时间:02-23 来源:互联网 点击:

行任何加工,尤其适合应用于大管径、大流量场合。

  相对传统的流量计,超声多普勒流量测量方法特点比较突出,适合多种工况条件和液体类型流量的测量,在工业流量测量中具有广泛的应用前景。近年来,随着电子技术和信息技术的飞速发展,超声波流量测量的技术水平有了很大提高,但研究重点非常明显地集中在血流测量等医学领域,超声波工业管道流量测量方面的研究相对较少,且主要集中于时差式流量测量(以天然气流量测量最为突出),在多普勒方法方面的研究不多,导致现有工业管道用超声多普勒流量计的性能普遍不高,存在以下缺点:

  (1)不能判断流速方向;

  (2)低流速测量困难;

  (3)动态响应速度慢、实时性差;

  (4)基本误差一般为±(1%~10%)FS,重复性为0.2%~1%,相对时差式超声波流量计、质量流量计、电磁流量计等其它流量计而言精度比较低。

  这些缺点极大限制了超声多普勒流量计的推广和使用。目前超声多普勒流量计一般只在一些特殊场合下使用,比如便携式测量、明渠流量测量、超大管径流量测量等。

  1.2超声多普勒流量测量研究进展

  1.2.1多普勒流量测量模型

  超声多普勒流量测量技术在过去的几十年中得到不断发展,出现了多种测量模型,本章概括为分为连续波多普勒(CW Doppler)模型 、脉冲波多普勒(PW Doppler)模型、伪随机多普勒模型和调频多普勒(FM Doppler)模型 四种。CW Doppler流量测量采用收发分离的换能器,它们分别连续不断地发射和接收超声波信号并进行后续处理,这种测量模型一般用于平均流速和流量的测量,详细原理见本文4.2小节,本章主要介绍后面三种模型的研究进展情况。

  (1)PW Doppler模型

  PW Doppler可采用收发共用的换能器,进行间断式的脉冲发射,并作时间的门控式(Time-Gate)选通接收,测量原理如图1-1所示。

  超声换能器在起始时刻t0发射一串超声脉冲,并延迟一段时间1 t后接收超声回波信号,选通时间2 t决定了采样的回波信号长度,对应于取样分析的散射体样本大小,散射体样本在超声波传播方向的长度为:

  

  

  式中c0为流体中的声速。散射体距离管壁的径向位置为:

  

  根据多普勒效应,对时间长度为t2的取样回波信号进行频谱分析,得到散射体速度:

  

  式中fd为散射体样本的多普勒频移,f0为发射信号频率。

  通过改变延迟时间t1和选通时间t2,可得到超声波传播途径上任意位置的任意大小散射体样本的速度,从而可以测量流体在超声波传播方向上的流速分布。但这种方法存在一些缺点,如图1-1,定义PRF为选通时间的脉冲重复频率,由于PW Doppler流量测量可以检测出的最高多普勒频移只能是脉冲重复频率的一半,因此PW Doppler方法能探测的最大深度为:

  

  能够测量的最大流速为:

  

  并且最大探测深度和最大流速之间相互制约:

  

  由于上述这些缺点,PW Doppler方法近年来逐步被一种新的时域相关技术所取代。

  (2)伪随机多普勒模型

  伪随机超声多普勒流量测量模型的原理如图1-2所示。

  

  振荡器产生高频正弦波sinω0t,它被伪随机信号调制并功率放大后成为发射信号st(t):

  

  式中M(t)是m序列二进制伪随机码。st(t)遇到第i个散射目标后返回到接收探头的时间设为(t-τi),于是接收探头接收到的回波信号为:

  

  式中Ωi为第i个目标的多普勒频移。m序列经延迟τk后为M(t-τk),与回波信号经相关器解调后得到:

  

  由m序列自相关函数的性质可知:

  

  如果随机序列的N值相当大,则上式第二项可以忽略,即:

  

  这样,调节延迟时间τk就可以选通不同深度的运动目标进行分析。

  伪随机多普勒流量测量方法与CW Doppler和PW Doppler方法相比较,其可以克服CW Doppler方法没有距离选择性以及PW Doppler方法的最大测量距离和最大可能测量速度受限制等缺点。

  (3)FM Doppler模型FM Doppler流量测量一般采用线性调频方法,如图1-3所示。

  

  线性调频的扫描振荡器产生频率从f1到f2的线性调频信号:

  

  式中tm为扫频信号长度,扫频速率

  

  设散射质点位于收发换能器的声束轴线上,与换能器的距离约为R.在开始发射t =0时刻,运动质点与换能器的距离为r,运动速度在超声波传播方向上的分量为u,则发射信号经散射质点反射回到接收换能器的时间为:

  

  式中

  

  则接收到的信号可以表示为:

  

式中:B包含了反射系数及发射幅度等各种幅度因子,并假设换能器具有平坦的频响,传播媒质均匀且无传输损耗。送入乘法器的复参考信号为延

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top