你了解电源中电子元件的作用吗?
间将产生过大电流突波以及线路压降,可能使桥式整流器等组件超出其额定电流而烧坏。NTC使用时串联于L或N线路上,启动时其内部阻抗值可以限制充电瞬间的电流值,而负温度系数的定义是其电阻会随其温度上升而降低,所以随着电流流过本体使温度逐渐升高后,其阻值会随着降低,避免造成不必要功率消耗。
其外观大多为黑色及墨绿色的圆饼状元件
但其缺点是电源处于热机状态下启动时,其保护效果会打上折扣,且即使阻抗可随温度降低,仍会消耗些许功率,所以目前高效率电源大多采用更进阶的瞬时保护电路。
金氧变阻器(MOV)
变阻器跨接于保险丝后端的火线与地线间,其动作原理为当其两端电压差低于其额定电压值时,本体呈现高阻抗;当电压差超出其额定值,本体电阻会急速下降,L-N间呈现近似短路状态,前端的保险丝因短路而升高的电流将会使其熔断,以保护后端电路,有时本体承受功率过大时,亦以自毁方式来警告使用者该装置已经出现问题。
通常用于电源供应器交流输入端,当输入交流发生过电压时能及时让保险丝熔断,避免使内部组件损坏。其颜色与外观与Cy电容很接近,不过可以从组件上面的字样及型号来分别其不同。
■ 桥式整流器
内部由四颗二极管交互连接所构成的桥式整流器,其功用是将输入交流进行全波整流后,供后端交换电路使用。
其外观与大小会随着组件额定电压及电流的不同而有所差异,部分电源供应器会将其固定于散热片上,协助其散热,以利稳定的长时间运作。经过整流后,便进入功率级一次侧的交换电路,这里的组件决定了电源供应器的各路最大输出能力,是电源供应器相当重要的一部份。
■ 开关半导体
在交换电路中作为无接点快速电子开关,依控制信号导通及截止,决定电流是否流过,于主动功率因数修正电路以及功率级一次侧电路扮演重要角色。
照片中上方为电源内常见的N MOSFET(N型金氧半导体场效半导体管),下方则是NPN BJT(NPN型三极管)
随着开关组件的电路组成方式,可构成双晶顺向式、半桥式、全桥式、推挽式等等不同的功率级拓墣,在讲求高效率的电源供应器内,也有使用开关半导体构成同步整流电路以及DC-DC降压电路的应用。
■ 变压器
为何称为隔离型交换式降压电源,就是因为使用变压器作为高低电压分隔,并利用磁能进行能量交换,不仅可以避免高低压电路故障时的漏电危险,也能简单产生多种电压输出。因其运作频率较高,变压器体积较一般交流变压器要来得小。
因为变压器为功率传递路径之一,目前大输出电源有使用多变压器的设计,避免单一变压器发生饱和现象而限制功率的输出。照片中上方较小的变压器为辅助电源电路以及信号传递用的脉冲变压器,下方较大者为主要功率变压器以及环形的二次侧调整用变压器。
以变压器作为隔离分界,二次侧的输出电压已经比一次侧要低上许多,不过还需要经过整流、调整以及滤波平滑等电路,才会变成计算机零件所需的各电压直流电。
■ 二极管
电源供应器内部,随着各部电路要求及输出大小而使用不同种类以及规格,除了一般的硅二极管外,还有萧特基障壁二极管(SBD)、快速回复二极管(FRD)、齐纳二极管(ZD)等种类。
图片中为二极管常见的封装形式
FRD主要用于主动功率因数修正以及功率级一次侧电路;SBD用于功率级二次侧,将变压器输出进行整流;ZD则是作为电压参考用。
■ 电感器
电感器随着磁芯结构、感抗值、电路上安装位置的不同,可以作为交换电路中的储能组件、磁性放大电路的电压调整组件以及二次侧整流后输出滤波使用,于电源供应器中广泛使用。
图片中电感形状有环形及圆柱型,随着感值及电流承受力而有不同的圈数以及漆包线粗细。
■ 电容器
如电感器般,电容器同样也作为储能组件以及纹波平滑使用。为了承受整流后的高压直流,高耐压电解电容用于电源供应器一次侧电路;为了降低输出下电解电容连续充放电时造成的损失,二次侧电路则大量使用高耐温长寿低阻抗电解电容。
图片中下方较大者为用于一次侧的高耐压电解电容,上方较低耐压则使用于二次侧及外围控制电路
因电容内有化学物质(电解液)的关系,工作温度对电解电容的寿命有相当影响,所以长时间下运作,除了维持电源供应器的良好散热外,其使用的电解电容厂牌及系列也决定电源供应器稳定运作的可靠度及寿命。
■ 电阻器
电阻器用于限制电路上流过的电流,并于电源供应器关闭后释放电容器内所储存的电荷,避免产生电击事故
- LT3751如何使高压电容器充电变得简单(08-12)
- 2A超级电容器充电器平衡和保护便携式应用中的超级电容器(11-01)
- 电容器与声音的关系(11-04)
- 升压电源与高压天线和滤波器提供调谐信号(01-28)
- 电容降压LED驱动电路(06-24)
- 一种无电解电容LED驱动方案中输出功率的测量(06-10)