工程师常用的电子变压器技术概论
可靠性和电磁兼容性。以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性。可靠性是指在具体的使用条件下,电子变压器能正常工作到使用寿命为止。一般使用条件中对电子变压器影响最大的是环境温度。决定电子变压器受温度影响强度的参数是软磁材料的居里点。软磁材料居里点高,受温度影响小;软磁材料居里点低,对温度变化比较敏感,受温度影响大。例如锰锌铁氧体的居里点只有215℃,比较低,磁通密度、磁导率和损耗都随温度发生变化,除正常温度25℃而外,还要给出60℃,80℃,100℃时的各种参数数据。因此,锰锌铁氧体磁芯的工作温度一般限制在100℃以下,也就是环境温度为40℃时,温升必须低于60℃。钴基非晶合金的居里点为205℃,也低,使用温度也限制在100℃以下。铁基非晶合金的居里点为370℃,可以在150℃~180℃ 以下使用。高磁导坡莫合金的居里点为460℃至480℃,可以在200℃~250℃以下使用。微晶纳米晶合金的居里点为600℃,取向硅钢居里点为 730℃,可以在300℃~400℃下使用。电磁兼容性是指电子变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括可听见的音频噪声和听不见的高频噪声。电子变压器产生电磁干扰的主要原因是磁芯的磁致伸缩。磁致伸缩系数大的软磁材料,产生的电磁干扰大。铁基非晶合金的磁致伸缩系数通常为最大(27~30)×10-6,必须采取减少噪声抑制干扰的措施。高磁导Ni50坡莫合金的磁致伸缩系数为25×10-6,锰锌铁氧体的磁致伸缩系数为 21×10-6。以上这3种软磁材料属于容易产生电磁干扰的材料,在应用中要注意。3%取向硅钢的磁致伸缩系数为(1~3)×10-6,微晶纳米晶合金的磁致伸缩系数为(0.5~2)×10-6。这 2种软磁材料属于比较容易产生电磁干扰的材料。6.5%硅钢的磁致伸缩系数为0.1×10-6,高磁导Ni80坡莫合金的磁致伸缩系数为(0.1~0.5)×10-6,钴基非晶合金的磁致伸缩系数为0.1×10-6以下。这3种软磁材料属于不太容易产生电磁干扰的材料。由磁致伸缩产生的电磁干扰的频率一般与电子变压器的工作频率相同。如果有低于或高于工作频率的电磁干扰,那是由其他原因产生的。
2.2 完成功能电子变压器从功能上区分主要有变压器和电感器2种。
特殊元件完成的功能另外讨论。变压器完成的功能有3个:功率传送、电压变换和绝缘隔离。电感器完成功能有2个:功率传送和纹波抑制。功率传送有 2种方式。第一种是变压器传送方式,即外加在变压器原绕组上的交变电压,在磁芯中产生磁通变化,使副绕组感应电压,加在负载上,从而使电功率从原边传送到副边。传送功率的大小决定于感应电压,也就是决定于单位时间内的磁通密度变量ΔB。ΔB与磁导率无关,而与饱和磁通密度Bs和剩余磁通密度Br 有关。从饱和磁通密度来看,各种软磁材料的Bs从大到小的顺序为:铁钴合金为2.3~2.4T,硅钢为1.75~2.2T,铁基非晶合金为 1.25~1.75T,铁基微晶纳米晶合金为1.1~1.5T,铁硅铝合金为1.0~1.6T,高磁导铁镍坡莫合金为0.8~1.6T,钴基非晶合金为 0.5~1.4T,铁铝合金为0.7~1.3T,铁镍基非晶合金为0.4~0.7T,锰锌铁氧体为0.3~0.7T。作为电子变压器的磁芯用材料,硅钢和铁基非晶合金占优势,而锰锌铁氧体处于劣势。功率传送的第二种是电感器传送方式,即输入给电感器绕组的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁变成电能释放给负载。传送功率的大小决定于电感器磁芯的储能,也就是决定于电感器的电感量。电感量不直接与饱和磁通密度有关,而与磁导率有关,磁导率高,电感量大,储能多,传送功率大。各种软磁材料的磁导率从大到小顺序为:Ni80坡莫合金为(1.2~3)×106,钴基非晶合金为(1~1.5)×106,铁基微晶纳米晶合金为(5~8)×105,铁基非晶合金为(2~5)×105,Ni50坡莫合金为(1~3)×105,硅钢为(2~9)×104,锰锌铁氧体为(1~3)×104。作为电感器的磁芯用材料,Ni80坡莫合金、钴基非晶合金、铁基微晶纳米晶合金占优势,硅钢和锰锌铁氧体处于劣势。传送功率大小,还与单位时间内的传送次数有关,即与电子变压器的工作频率有关。工作频率越高,在同样尺寸的磁芯和线圈参数下,传送的功率越大。电压变换通过变压器原绕组和副绕组匝数比来完成,不管功率传送大小如何,原边和副边的电压变换比等于原绕组和副绕组匝数比。绝缘隔离通过变压器原绕组和副绕组的绝缘结构来完成。绝缘结构的复杂程度,与外加和变换的电压大
- 现代电力电子及电源技术的发展(12-14)
- 电源技术与电子变压器(12-15)
- 数字控制UPS电源技术及应用(03-29)
- 电源技术发展及电源管理的应用(07-13)
- 如何检测LED系统的EMC和可靠性(02-13)
- 必看:不同LED驱动在不同应用中的差别(03-27)