微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 变频协调控制技术在一次风高压变频系统中的应用

变频协调控制技术在一次风高压变频系统中的应用

时间:10-13 来源:本站整理 点击:

              图2:控制结构框图

    其工作原理是:将一次风机工/变频自动切换系统的综合保护装置作为变频回路和工频回路的主要检测方式,接受变频器上口、变频器下口以及变频器旁路开关的二次检测信号。通过对主动力系统不同位置的运行工况参数及工作状态的检测,由故障点分析模块根据信息来源的动作先后、反应速度、二次电流、电压的幅值变化,结合变频器自身的运行参数检测信息,分析判断故障点的真实位置。通过故障识别模块判断故障的安全级别和危害程度,同时指示出具体故障点位置和故障原因。

    协调控制模块在接到故障点分析的具体位置和安全级别报告后,结合现场设备的运行状态和工况,决定是否采取变频向工频运行方式的切换操作。如果一次风机主动力系统允许由变频向工频运行方式的自动切换;系统直接将另一侧变频风机直接快速加速至100%,并根据实际负荷,计算出跳闸侧风机工频开关的合闸操作时机。通过挡板开度函数器实时计算出变频切工频后一次风机挡板开度自动关小的位置信号,从而实现变频向工频切换过程中一次风压尽量小扰动。保证切换动作过程中,锅炉的一次风压波动瞬值不高于锅炉燃烧系统对一次风速的最低要求、时间小于2S,使得锅炉在一次风机的切换时,锅炉运行平稳、安全不灭火、不跳机。

    数字量输入、输出接口模块主要是接受外围远程控制信号,实现一次风机变频上、下口及旁路开关的联锁保护、闭锁逻辑和控制功能。同时将高压开关和外围控制信号传递给协调控制模块进行综合信息处理和判断。

    故障诊断和自处理模块主要是对外围接入的开关量、模拟量以及二次仪表的检测信号进行分析判断,确定信号接口是否正常,信号输入、输出是否有效,是否存在错误状态等。并且根据实时的状态信息,判断出故障端口点号,并将其从逻辑处理回路中切除,通过信号替代保持信号处理的完整性。从而,提高系统逻辑处理的安全及可靠性。    

                                                                                              图3:变频协调控制单元外形图

    三、一次风变频调速后存在问题及对策

    1.一次风机变频后的“抢风”问题

    通过对一次风机的结构和工作特性研究可知:风机具有明显的马鞍形特征,在风机性能曲线的左半部具有一个马鞍形区域,在此区段内运行有时出现流量大幅度脉动等不正常情况,出现“喘振”问题。而喘振仅仅是不稳定工况区内可能遇到的现象之一,在该区域内还会出现不正常的零气动力工况,这便是旋转“失速”现象。风机在不稳定工况区运行时,还可能发生流量、全压和电流的大幅度波动,气流会发生往复流动,产生强烈振动,这就是通常提到的“抢风”。锅炉一次风机改为变频调速后,两台风机并列运行,就非常容易发生“抢风”现象,威胁风机及整个系统的安全性。下面就针对两台风机的运行工况进行分析说明,如图4。    

                                                                                                           图4:风机的并联运行图

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top