连接器名厂及连接解决方案集锦
出连接器的信号波形比较。实验的电路原理图如图5所示。
3.1 器件选择
光发射器件可以选用红外LED、白光LED、激光二极管等,光接收器件可以选用PIN光电二极管,光电三极管等。随着科学技术的发展,红外发射与接收器件目前已广泛应用于遥控、遥测和短距通信等领域。
在本设计的实验中选用市售具有较高响应速度的红外发光二极管和光电二极管作为连接器中的光通信器件。选用单片机作为转台上的信号发送与接收控制器,用微 机作为上位机,两者通过RS232串口和旋转连接器连接通信。为降低线路复杂性,转台上的电路使用9v层叠电池稳压为5v做电源。
3.2 信号收发电路模块Ⅰ、Ⅱ的电路
光电二极管一般有两种工作模式:光伏模式和光导模式。在光伏模式时,光电二极管可以非常精确地线性工作;在光导模式下,光电二级的切换速度较高,但具有 明显的非线性,同时即使在无光条件下也会产生暗电流引入噪声。光电二级管暗电流大小与温度有关,在温度变化较大的场合噪声较强,会使信号传输误码率大大增 加,需要加入温度补偿电路。实验在一个较理想的条件下进行,环境温度不大,光电二极管工作在光导模式。图6为光电检测信号的两级放大与整形稳幅电路,图7 为LED发光管驱动电路。各元件具体参数値根据实际选择调整。
4.结论
本文针对现有旋转连接技术实现方法中的不足,设计了一种易于实现的双通道光电耦合离轴旋转连接装置的方案,对其原理进行了分析并通过实验对该设计方法的 实际可行性进行了验证。实验结果表明,本方案能够实现相对旋转的机构之间的非接触通信,同时结构简单,机械加工精度要求低,成本低,某些场合下可以代替光 纤连接器实现多路多通道数据传输,也可应用于一些总线通信中。
原文详情:基于双通道光电耦合离轴旋转连接器设计方案
基于模拟音频连接器的全双工数据流实现方案
目前,手机厂商正将主动降噪技术作为其产品的一大差异化优势,在通话和媒介消费上提供卓越的音频体验。最经济实惠且便捷的降噪方法就是在手机中内置降噪电路。但是噪声拾取必须在耳机上实现而不是在手机上,因为手机可能会放在用户的口袋里从而可能会阻断噪音源。
这就带来了很大的困难:如何通过标准的3.5毫米音频接口将左、右两个通道的噪声信号从耳机传送到手机,同时将降噪信号从手机回传到耳机。标准的模拟音 频接口一般有四个通道。两个通道被用于左、右声道的喇叭,一个麦克风通道和地线。麦克风通道同时用来给麦克风供电。在打电话时,麦克风将语音信号传送到手 机。
当3.5毫米音频接口被用于传统模拟模式时,就无法将左、右两个通道的噪声信号从耳机传送到手机上进行处理。奥地利微电子已开发出 全新的数字多路复用技术,实际上,它可在麦克风通道中创造额外的通道。这些通道能够用于降噪应用,可将耳机中两个或四个额外的左、右声道的麦克风的采样噪 声传送到手机中。
在其他应用中,额外通道可用来与音频配件进行中、低数据率的数据通信,比如给配件增加显示功能、传送传感器数据或其他 额外功能。当然,音频接口的传统工作模式也会得到保留,因此不支持增强特性的标准耳机仍可以使用。本文介绍了如何通过3.5毫米音频接口来实现全双工数据 通信。
同时采用电压和电流调制
如今数字麦克风作为基于过采样时钟的串行 ∑-Δ调制比特率流被广泛用来提供音频信号。这使得采用多路复用信号数字技术提供全双共通信成为可能。挑战是在同一线路上避免上行和下行信号之间的干扰, 同时提供一个足够高的比特率来满足消费者对高音质的需求。一种可行的技术是在麦克风通道上同时采用电压和电流调制技术:一个提供上行信号,另一个则提供下 行信号。
为了验证此项技术的有效性,奥地利微电子开发了一个完整的演示系统,该系统包括降噪功能,能够用3.5毫米音频接口与手机或MP3播放器相连。它提供了约2Mbit/s的上行信号和12Mbit/s的下行信号。
该演示系统由主电路和外围电路组成(见图1、2)。(在实际的终端产品设计上,主电路会嵌入到移动设备中,而外围电路则是在耳机的控制部件上。)
图1:数字多路复用演示系统方框图。
图2:奥地利微电子的演示系统展示了主电路板(底部),带有音量放大、模式和音量减小键的外围电路板(上),以及头戴式耳机。
电池与主电路板相连,以提供独立的电源。主电路板通过3.5mm麦克风接口的麦克风通道给从电路板供电,同时传送调制的麦克风信号。主电路板会生成一个同步时钟,外围电路板
AS3430 IP4791 Molex 连接器 NXP 相关文章:
- 恩智浦(NXP)高效ESD保护的HDMI接口解决方案(03-01)
- Molex推出工业与网路应用光学快速转换电缆组件(11-10)
- 在使用以太网之前评测工厂基层网络覆盖范围(09-11)
- 汽车互联技术实现功能丰富的消费电子装置(10-05)
- Molex SST??IP67?PB3远程模块(02-20)
- Molex推出iPass+?高密度互连系统(02-27)