微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于MPX2100型压力传感器的高精度数据采集系统

基于MPX2100型压力传感器的高精度数据采集系统

时间:06-25 来源:中国仪表网 点击:

空闲模式和掉电模式;

  ④片内含有一个看门狗定时器(WDT),WDT包含一个14位计数器和看门狗定时器复位寄存器(WDTRST),只要对WDTRST按顺序先写入 01EH,后写入0E1H,WDT便启动,当CPU由于扰动而使程序陷入死循环或"跑飞"状态时,WDT即可有效地使系统复位,提高了系统的抗干扰性能。

  (2)外围电路部分

  接口电路的片选信号由74LS138对高位地址线P2.0(A8)、P2.1(A9)、P2.2(A10)译码后生成,主要有8155可编程接口电路片选信号CS_8155(Y0)、键盘接口片选信号CS_KEY(Y1)及液晶模块片选信号CS_LCD(Y2)等。LCD选用OCULAR公司生产的字符点阵液晶显示模块GD1602S,该模块能显示20×2的5×7点阵字符,功能强,与8位MCU接口方便;键盘接口设计为通用PC机接口(PS/2),是因为通用PC机键盘具有价格低廉、可靠性高、通用性好及操作方便等优点,而且维护方便,限于篇幅本文未介绍。A13、A14、A15组成多路模拟开关 4051的编码地址线,Vxi即为4051按照键盘输入的地址选出的一路模拟信号,它将被送往信号调理模块进行放大调理。在恶劣的工业工作环境中,串行通信接口芯片很有可能受到静电的冲击而损坏,特别是在传输线架设于户外的使用场合,接口芯片乃至整个系统还有可能遭致雷电的袭击。本文选用的RS-485接口芯片SN75LBC184不但能抗雷电的冲击而且能承受高达8kV的静电放电冲击,最大传输距离约1219m,最大传输速率为10Mb/s;可以保证与上位机进行通信时稳定可靠。

  3、双积分模/数转换接口电路

  (1)芯片ICL7135介绍

  ICL7135是美国MAXIN公司生产的一个双积分式A/D转换集成电路,该芯片抗干扰能力强、分辩率高、价格低廉。它的分辩率相当于14位二进制数,转换误差为±1LSB,转换输出为0~19999;当测量量程为0kN~2000kN时,这样的精度使得仪表的分辩率达到0.1kN;模拟输入可以保证0点在常温下的长期稳定性。由于7135输出的转换结果是动态扫描BCD码,因此常规设计一般通过并行接口与单片机连接,以节省单片机的硬件开销,同时 8155中的定时器还可以满足7135对时钟的需要。

  (2)A/D转换电路及其原理

  电路原理图如图5所示。

  

  7135与8155的连接是通过4位2选1数据多路开关74LS157来实现的。其选通信号由7135的D5输出控制。当A/D转换结束时,D5输出高电平,74LS157选通B类通道,单片机通过PA0~PA3读入万位数B1、状态位POL(极性)、OVR(过量程)和UR(欠量程);当D5输出完成时,变为低电平(这一过程包括D4~D1数据输出周期在内),74LS157选通A类通道,单片机通过PA0~PA3将依次读入8421码值 B8,B4,B2及B1,即低位BCD码,依次形成万、千、百、十、个各位BCD码(即转换结果)。8155A口中断请求线PC0反相后形成单片机的外中断0触发信号。当7135完成1次转换后,产生5个数据选通脉冲,分别将各位BCD码和位标志送入A口;A口收到一个数据后,中断线PC0变为高电平,启动单片机的中断服务程序,读取A/D转换的数据结果。7135的转换启动由P14控制,高电平转换开始,低电平保持。

  经调理后的 0V~2V的模拟信号通过RC低通滤波后,从IN+,IN-输入。A/D转换后的结果包括2部分:极性和量程,反映转换性质的结果。转换后的数字信号为 D1,D2,D3,D41及D5,其中D5(万位)只能是1或0,其他几位为0~9的BCD码。而7135所需的参考电压为量程的确良1/2,如果量程为 2V,则参考电压为1V。为了保证转换的温度稳定性和精度,采用高精度基准电源MC1403,通过金属膜多圈进口电位器调节得到。参考电压上并联的CBB 电容C46(0.1mF),C47(1mF)主要是保证参考电压的稳定性。

  积分电容是决定转换精度的关键器件。按照7135应用特性,积分电容C8和积分电阻R3与量程等有关,选用时必须满足以下要求:

  R3=满度电压/20mA(3)

  C8=1000×20mA×T/积分器输出摆幅(4)

  式中,T=1/fclk。

  fclk—7135的时钟频率,一般可选择250kHz,166kHz、125kHz、及100kHz、典型值为125kHz,此时7135的转换速率为3次/s。

  在±5V系统中,如模拟地为0V,则摆幅为±4V,此时量程为?C2V~+2V,则:R3=100kW,C8=0.47mF。

  (3)PLD技术的应用

  为节省了硬件电路的开销,减少硬件电路产生的电磁干扰,系统的部分电路应用了PLD技术,其可编程逻辑电路(见图5)由可编程逻辑陈列芯片 GAL16V8组成,主要完成A/D转换模块所需的时钟信号和转换结束选通信号产生单片机外中断0中断信号的逻辑转换,其逻辑方程如下:

  P16=+(与非门)(5)

P14=P7+P

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top