新型微型传感器特征及在医疗仪中的应用
的温度漂移,这两个参数(指SPRT灵敏度温度漂移与满偏榆出的温度漂移)的温度特性互成正比,电路中的调零电阻Rjz用来补偿传感器在室温下的失调电压,温度敏感电阻Rts和Rtz(或R‘’tz)用于校正温度误差。前面提到,桥路电阻随着温度上升而增加,使传感器两端的电压Vo+Vo-()也增加,这个增加的电压△Vo+Vo-会使传感器的灵敏度上升,也就是说,在给定压力下它将输出更高的电压。
然而,如果保持传感器两端电压恒定,传感器的灵敏度就会随着温度的上升而降低(或称负向灵敏度系数),但因为桥路电阻受温度影响而增加时,它所引起的灵敏度正向变化系数是大于负向灵敏度系数,所以,满偏输出(FSO)趋向于随着温度增加而增加。电阻器Rts可以在温度上升时旁路掉一部分桥路电流,从而抵消上述效应。类似地,Rtz或R‘’tz可对失调的漂移进行校正。电路中选择Rts还是R‘’tz取决于失调的温度漂移方向。
这种传统校正方法的优点是程式简单、廉价,但主要问题是各个补偿元件之间互相影响,使校准非常困难,并限制了所能达到的精度,该校正技术也不便于采用电子调整。
6、现代校正-补偿技术
由于SPRT的误差幅度范围很宽,因而必须要用通过现代与简化补偿法来校准。目前现代校正-补偿技术是采用MAX145新型信号调理芯片与SPRT的组合,即成智能传感器与技术。
用一片信号调理MAXl457 IC以驱动呼吸监视仪的硅压阻式传感器(SPRT),并校正传感器的误差。MAXl457它带一个用于驱动传感器的受控电流源和一个用以采样传感器桥路电压的ADC(模数转换器)。
MAXl457还包括一个可编程增益放大器(PGA),用于放大传感器的差分输出;以及5个数DAC(数模转换器),用于校正各种不同的传感器误差。由于传感器输出的是微弱信号,PGA的输出电压还不足以驱动ADC。为此,MAXl457的内置运放可用来提升PGA的输出至合适的电平。
由于桥路电压随温度而上升,这种温度相关性可以用来补偿满偏输出(FSO- Full SPAN output)的温度误差。对于恒流源激励电桥,满偏输出(FSO)随着温度上升而下降,造成了满偏输出的温度相关误差(FSOTC)。然而,如果使桥路电压随着温度以一定的速率上升,恰好补偿掉满偏灵敏度随温度的下降,则满偏输出(FSO)将保持恒定。
6.1MAXl457如何利用这种方法校正温度引起的满偏输出(FSO)误差(见图4所示)。

首先,由ADC对桥路电压进行量化,根据量化结果,找出一个预先计开算好的四种校正系数(己保存于EEPROM内)送人FSOTC DAC。然后DAC输出电压对桥路激励电流进行调整,调整后的激励电流改变了桥路电压,从而补偿了特定温度下,因传感器的灵敏度改变造成的满偏输出(FSO)误差。为实现平滑校正,桥路电压被用作FSOTC DAC的参考输入,在相邻两个数字补偿点(由ADC提供给EEPROM)之间进行模拟补偿。同样的方法被用于补偿失调的温度漂移(OFFSETTC),所不同的是,OFFSETTC DAC的输出电压被馈人PGA输出端的求和节点(而不是MAX1457的电流源)。
6.2对上述四种温度校正系数的计算步骤的说明
首先,将传感器和MAXl457置于最低温度获取不同压力下的传感器数据,然后,再将传感器和MAXl457置于最高温度下获取不同压力下的传感器数据。利用这些极限温度点的数据,专为MAXl457设计的应用软件可计算出四种校正系数:满偏输出(FSO)、满偏输出的温度相关误差(FSOTC)、偏移-失调(Offset)、失调的温度偏移(OFFSETTC),这四种系数可以修正SPRT的一阶误差。
为获得0.1%的精度,MAXl457允许在特定温度进行补偿,只需对每个规定温度计算FSOTC和OFFSETTC由用户决定校准点的数量(最多至120点)。如果传感器误差具有良好的可重复性,此种SPRT与MAXl457组合可获得优于0.1%的精度。
MAXl457的补偿技术相对于图3所示的传统方法具有明显优势。MAXl457消除了补偿元件之间的相互影响,这得益于相互独立的失调和满度调整:失调在PGA输出端进行补偿,而FSO的修正通过电流源实现。另一个好处是,由于针对不同温度点进行特定修正,获得更高的精度成为可能。这种方法本质上优于采用外部电阻的方式,因为后者无法在特定温度点对传感器进行精确补偿。
由于MAX1457所提供的精度可远高于一个呼吸监视仪的要求,之所以选择它,主要是因为它内部还包含一个附加的运放,可以对呼吸监视仪传感器的低电平信号进行放大。由于MAX1457使监视仪可以工作在很宽的温度范围,应用SPRT和MAX1457组合可获得优异的精度,为此它能应用于空间探测及潜水呼吸器
MAX1457 MAX1450 微型传感器 智能传感器 相关文章:
- 现代汽车电子中关于智能传感器的应用与发展(07-07)
- RBF神经网络在智能传感器模块设计中的应用(05-21)
- 能量采集带来了全面提高微控制器效率的要求(02-08)
- 智能传感器的功能特点(04-28)
- 基于智能传感器SP12/SP30的TPMS设计(06-14)
- 基于W3100A的IP荷重传感器设计(06-23)
