基于在线软件工具的数字电源UCD92xx反馈环路调试指南
据实测结果再微调,最终可以得到一个理想的环路配置,整个过程中无需调试硬件。
2.1 录入功率级参数
在图3 的设计界面中有"Edit Full Power Stage in Schematic"按钮,点击后弹出界面8。在该窗口中,用户需要输入实际使用的硬件参数值,包括电感(及DCR),电容,反馈电阻等。
上述输入的这些参数用来完成整个闭环环路的模拟与仿真。因此,当录入的参数越是与实际参数一致,则仿真得到的环路参数也越是与实际相符。
录入完毕后即可保存退出。
图 8:录入功率级参数
2.2 使用Auto Tune 功能
录入参数完毕后,就可以开始进行环路的补偿及配置。首先可以使用Auto Tune 功能,这也是最为简单的环路配置方式。即,点击"Compensation Mode"中的"Auto Tune",此时图9 中的中间上部区域会显示配置后的环路参数:截止频率19.05kHz,相位余量64.32°,增益余量15.16dB。该功能使用客户所输入的硬件参数,以及对相位增益的要求,来自动配置环路补偿。使用该功能后,Fusion Digital Power Designer 会进行自动配置环路补偿,客户无法更改环路配置。
图9 右侧区域是基于当前配置的环路参数模拟动态后得到的结果。其中动态条件是可以自行输入的,最终的动态纹波峰峰值在右侧的上部区域有显示。
如果对这个环路参数及模拟得到的动态纹波峰峰值比较满意,可以保留当前参数。环路调节完毕。
图 9:Auto Tune 功能
2.3 手工优化参数配置
假如使用Auto Tune 得到的参数不理想或者想进一步优化,可以点击"Compensation Mode"中的"Manual",然后通过调节Linear Compensation 和Non-linear Compensation 得到一个更为理想的环路配置。
1. Linear Compensation 的调试方法
如图10,显示的是某次环路配置结果,没有使能Non-linear 功能。可以观察到,其截止频率为1.27K。此时测试到的动态波形(测试条件为:20A~40A~20A,斜率为2.5A/us)的峰峰值为159mV,超出了所要求的100mV指标。
还可以观察到动态波形的恢复时间也超出了要求的范围,这是因为过大的动态纹波峰峰值导致了EADC 输出饱和,其输出值被钳制在一个固定值(该值与AFE 的Gain 有关系),因此环路补偿电路只能根据该饱和值(小于实际输出值)进行补偿,由此带来了较长的恢复时间。超长的恢复时间的根因是动态纹波峰峰值过大。
图 10:带宽过低造成动态响应差
下面将对上述不太理想的环路进行优化,措施包括调整低频增益,第一零点,第二零点和第二极点。
在进行手动调节前,需要选定调节方式。目前有三种方式可选:1)Real Zeros 模式;2)Complex Zeros 模式; 3)PID 模式。其中Real Zeros 模式最为贴近常规模拟电源的环路调节方式,下文主要针对此种方式阐述。
1) 调整低频增益
观察图10 中的波特图,功率支路的双极点位于约6KHz 处,环路的两个零点分别是4KHz(Fz1)和13.94KHz(Fz2),但是两个零点的位置都在截止频率的右侧,因此零点对截止频率的贡献较小,可以尝试增大低频增益。
K 表示低频增益。将K 值由原来的61.1dB 修改为72dB 后,截止频率变为10.41KHz,有了明显的改善,且位于两个零点之间。增益余量和相位余量亦满足环路稳定准则的要求。
图 11:调整低频增益的实际效果
2) 调整第一零点和第二零点
第一零点为4KHz,位于双极点的左侧。即,环路增益受到到第一零点的影响而增强后,随后会受到双极点的影响而衰弱。因此,此时右移第一零点,将会减小截止频率,相位余量也会被减小;反之,截止频率和相位余量会继续变大。例如,当将第一零点修改为5Khz 后,截止频率减小到9.29KHz,相位余量减小为89.2°。
图 12:调整第一零点的实际效果
第二零点为14KHz,位于双极点的右侧,接近截止频率。因此,当左移该零点,原截止频率处的环路增益得到增强,截止频率会变大。第二零点处的相位会被提升,当截止频率变大而接近第二零点后,相位余量也会因此变大。例如,当将第二零点修改为11KHz 后,截止频率变大到9.87KHz,相位余量增大到94.68°。
图 13:调整第二零点的实际效果
3) 调整第二极点
观察图13 中的波特图,增益余量对应的频率为200KHz,而第一极点的位置是119.9KHz。因此,如果想进一步增大增益余量,可以左移第一极点。此时,增益达到200KHz 区域后会下降的更多,增益余量得以增大。
图 14:调整第二极点的实际效果
至此,低频增益,零点和极点都有所调整。使用当前环路参数测试到的动态波形见图15,可以观
- 数字电源UCD92xx 输出电压波形的优化(06-12)
- 干货:超经典的开关电源问题集锦大全(11-23)
- 管理多电压轨系统让数字电源管理变得简单(08-17)
- 数字电源系统管理加快 “绿色”电子系统的上市时间(07-25)
- 数字电源设计与实现问题探讨(08-08)
- 系统设计师的数字电源(09-19)