LED强敌横空出世,且看有机EL照明的起舞
效率。
2009年发布的是在玻璃中加入气泡使光散射的技术。而2012年发布的技术,是用直径约2μm的陶瓷粒子取代难以控制直径的气泡添加到玻璃中,从而大幅降低了散射效果对波长的依赖注4 )。
注4) 旭硝子表示,在光散射用粒子的粒径小至数百nm时,可充分散射蓝色光的"瑞利散射"占主导,而在粒径为2μm左右时,对波长依赖性较小的"米氏散射"就会增强。
关于玻璃价格,旭硝子称"尚处于研究开发阶段,不便公开",但可能会以一个战略性的价格设定开展业务。也有企业认为,"欧洲有几家有机EL元件厂商已经有意采用估计是旭硝子生产的、具有光散射效果的玻璃"(欧洲某玻璃厂商)。
对元件的背面电极也加以大胆改造
另一方面,金泽工业大学的三上指出,要想进一步提高光提取效率,光凭元件表面设置的光提取层是不够的(图7)。因为根据三上的模拟实验,元件内部产生的光子中,有约50%因表面等离子体共振而丧失。这种现象是在元件发光面的反面电极(阴极)表面发生的。

图7:通过控制表面等离子体将发光效率提高到2倍以上
据金泽工业大学教授三上介绍,没有对光提取做改进的有机EL元件内部产生的光有约50%以表面等离子体损失消失。三上等人发现了对金属电极采用薄电极和反射层等多级构造,可大幅降低表面等离子体损失,从而提高发光效率的方法。(图由《日经电子》根据三上的资料制作)
三上认为,积极设法抑制这种(表面等离子体)损失,有助于进一步提高光提取效率,因此大胆改变了阴极的构造。这就是"多阴极构造"。试制的既具备这种构造又具备元件表面光提取层的绿色发光有机EL元件,其表面等离子体损失由约50%大幅降至约10%,发光效率由85lm/W提高到了2倍以上的185lm/W。光提取效率约为47%,作为薄型元件是很高的值。
各厂商也开始针对元件阴极采取措施。例如,东芝在SID 2012上发布的发光效率为91lm/W的元件,没有在元件正面一侧设置特别的光提取层。而是将阴极材料由原来的铝(Al)换成了其他高反射率材料。"并不能说明效率的提高全靠反射率,表面等离子体损失的降低等或许也发挥了作用"(东芝)。
蓝色材料的效率提高前景也光明
提高有机EL照明发光效率的第三个重点是蓝色发光材料的大幅改善。此前,蓝色发光材料与红色和绿色发光材料相比,在发光效率和发光寿命上的开发很迟缓。比如,尚没有具备足够"深度"和发光寿命的磷光发光蓝色材料。
光是深蓝色的话可以利用萤光材料,但萤光材料原理上的内部量子效率还不到25%。而磷光材料最大高达100%。蓝色发光只能使用萤光材料是进一步提高有机EL照明发光效率的巨大障碍。
最近,能打破这种界限的研究开发取得了进展。虽然尚未发现深蓝色磷光发光材料。但"推进了第3代发光材料的开发"(九州大学最尖端有机光电子研究中心教授安达千波矢的研发小组)(图8)。第1代为萤光材料,第2代为磷光材料,而新材料为第3代。

图8:超过蓝色萤光材料的"极限"
图中所示为超越此前激子利用效率为25%的萤光材料极限的两种技术。TTA/TTF通过使3重态状态(T1)的2个激子碰撞交换能量,变成1重态状态(S1)激子有可能发光(a)。而TADF以热使T1的激子移向S1有可能发光。(图(a)由《日经电子》根据出光兴产的资料制作,(b)由《日经电子》根据安达研究室的资料制作。(b)摄影:安达研究室)
不过,新材料实际上是萤光发光材料。与以往的不同在于,具备将此前以热等形式散失的能量用于萤光发光的机制。该机制主要有两种。
一种是九州大学安达的研发小组发现的"热活性型延迟萤光(TADF)"(图8)。从原理上来说,材料的内部发光效率可实现100%。截至目前已经确认实现了62%。最近还开发出了名为"pure blue"(安达研究室)的深蓝色TADF材料。
另一种是出光兴产和住友化学等正在开发的在萤光材料中发生称为"3重态-3重态消灭"(TTA)或"3重态-3重态融合"(TTF)现象的机制(图8)注5 )。不过,理论上材料的内部发光效率最大只有40%,与内部发光效率为100%的TADF有很大差距。出光兴产已经开发出效率接近理论极限的TTF材料,但表示"不会被理论束缚,还在为进一步提高效率而继续开发"(该公司电子材料部电子材料开发中心主任研究员熊均)。
注5) 出光兴产称为TTF,住友化学称为TTA。同一种现象有两种名称是因为,以前在磷光发光材料中增加电流密度时,TTA是导致发光效率降低的因素。而在萤光材料中则是提高发光效率的因素,因此出光兴产认为"融合(fusion)比消灭(annihilation)
- 三路输出LED驱动器可驱动共阳极LED串(08-17)
- LED向“绿色”转变需要高性能LED驱动器(08-17)
- 省电、高亮度LED需要高性能LED驱动器(08-16)
- 浅谈LED太阳能灯技术原理(08-10)
- LED照明的操作要求对驱动器IC性能构成压力(08-17)
- 汽车刹车灯及其他LED信号灯的准确“暗淡”/“明亮”控制(08-12)
