微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 如何实现绿色混合数字计算的电源管理

如何实现绿色混合数字计算的电源管理

时间:03-01 来源:互联网 点击:

需要来实现而不会产生全数字解决方案的高偏置电流缺点。精通模拟解决方案的电源工程师通常非常容易理解这一点,因而出错机会更小,更有可能在第一次就成功。

  (3)环路和瞬态响应

  由于DAC和ADC转换延迟,数字控制器的环路带宽通常限于不超过100kHz范围,而模拟和混合数字控制器可以超过100kHz,如图5所示。图6显示慢速环路的响应速度将会更慢并产生更高的过冲和下冲。模拟环路对负载和输入瞬态的响应快很多,最小化了输入和输出干扰,导致更小的输入和输出滤波器尺寸。尽管非线性技术通常用于加快数字控制器的响应速度,但它会在宽负载范围上造成不一致的响应,如图7所示,其原因在于离散阈值的触发。此外,非线性控制会导致不均匀的脉冲分布和低劣的电流均衡能力,如图9所示。与用于数字控制器的非线性控制方案相比,Intersil的混合数字控制器ISL6367/67H [9,10]使用的线性控制可产生平滑的负载阶跃响应和均匀分布的相位脉冲,如图8和图10分别所示。

  

  图6,慢速环路与快速环路瞬态响应。

  

  图8,采用Intersil的线性控制的瞬变。

  

  图10,线性控制1MHz瞬变的相位转换顺序。

  (4)DC性能

  与模拟解决方案的无限分辨率相比,全数字解决方案常常具有由于ADC分辨率和PWM分辨率而产生的量子化误差。另外,电源状态的纹波变化也会影响稳压精度,如图11所示。混合方案保持了模拟方案的高精度。

  数字控制器常常声称在环境条件、老化和元件变化下具有更小的Vout漂移。对数字控制环路补偿部分(没有外置R和C)是真的,但包括输出滤波器(电感和电容)在内的功率系的特征仍然会随着环境温度、老化和元件变化而变化。校准可以改进精度,特别是在电流侦测中,但它会增加成本(参见E部分)。除非在每次上电时进行校准并对控制环路进行重新配置,否则数字解决方案将仍然会有易受环境变化影响的缺点。此外,低DCR(0.15mOhm或更小)电感将会继续增多这样的影响,在全数字控制器的情况下这将要求更高分辨率的ADC,亦即更高的偏置电流。

  数字解决方案的DC精度受PWM分辨率的影响[2];例如,200ps PWM分辨率会对1MHz 开关频率下的12V输入产生2.4mV误差。

  

  图11,来自VID加载的输出失调(10A)

  (5)校准

  全数字解决方案常常宣扬其校准功能,因为它们常常需要进行校准来实现与混合方案相同的精度。校准是复杂和非免费的,常常需要外置MOSFET和精密侦测电阻,如同厂商B的解决方案一样。这些附加元件通常价值超过0.20美元,同时还会增加用电量。

  (6)相倍增器兼容性和上电顺序

  相数倍增器常常用于高相数和超频应用[3]。通道之间的电流均衡对设计稳健和可靠的系统极其重要。市面上实现通道电流均衡的相数倍增器仅为5V PWM输入逻辑[11,12],且不兼容3.3V数字控制器。数字控制器一直使用没有电流均衡功能的相数倍增器,这会产生长期可靠性较差和可能造成系统发热事件。Intersil相数倍增器集成电路的卓越相间电流均衡请参见图12。

  

  图12,Intersil相倍增器在负载瞬变期间的通道电流均衡

  在服务器领域,可产生最佳效率的典型驱动器电压为5V,这是不同于数字控制器的偏置电压的,它使上电顺序和保护复杂化;出现了三种可能情景:

  1) 驱动器首先上电。 驱动器检测到PWM低并接通低端MOSFET来给输出放电;系统将不允许预充电启动。

  2) 数字控制器首先上电。驱动器检测到PWM高或者在驱动器电压变慢时检测到一个全占空比PWM信号;系统将失去软启动并导致高端MOSFET的过应力。

  3) 驱动器和控制器由同一个启用信号控制。在断电期间由于高端MOSFET短路,CPU将不会受到保护,因为驱动器已被禁用。

  (7)系统保护

数字控制器需要数字化电压和电流信息,然后再将其转换回模拟信息,这一切全都在控制环路内部进行。这通常导致比模拟环路更慢的响应,如图5所示。另外,由于控制环路中的ADC和DAC,数字控制器将对需要立即予以响应的故障(如输出短路、高端MOSFET短路或输出过电压)产生较差的保护。如表1所示,市面上的数字解决方案只对输出提供一个侦测点。当反馈路径由于元件性能降低、灰尘或潮湿而形成分割器时,输出电压将上升而不触发过压保护(OVP),因为没有第二个点来监测输出电压。这会轻易导致单点故障和对CPU的潜在损害。另外,它们使用的是估计方法来检测输入电流。这种方法速度慢且不能提供真正的灾难性故障保护(CFP)输出来指示消除输入源,以免发生发热事件[9,10]。相反,Intersil的混合方案有两个输出侦测点(VSEN和FB

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top