微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 创新医疗传感器技术方案解析

创新医疗传感器技术方案解析

时间:04-28 来源:本站整理 点击:

因此无需使用电位器。理想的电流源有无限大的阻抗,因此很多设计者采用级联电流镜,付出的代价是降低了电压的裕度,增加了功耗。

  这些权衡必须谨慎地考虑和实现。有些耳蜗植入产品有多个电流源,较老的装置需要一个开关网络,将一个电流源连接至多个电极。新设计则使用了多个顺序或同时的电流源。在这些设计中,P沟道和N沟道电流源都可生成激励的正、负相位。挑战是要匹配P沟道和N沟道电流源,确保正负电荷的平衡。自适应恒流电压可以减少功耗,保持高阻抗。

  工程师们都更喜欢采用ASK(幅移键控)调制,而不是FSK(频移键控)调制,因为ASK有简单的实现方法,以及高频RF信号下的低功耗。多亏了各团队工程师、科学家、物理学家和企业家的不懈努力与合作,安全且费用合理的激励方法已恢复了全球超过12万人的听力。这些假体已成为指导其它神经假体开发的模型,可望提高几百万人的生活质量。

  第二部分:大脑、心脏与肺患有脑病和心肺病的人们受益于21世纪电子、生物以及医疗技术的协同。

  生物医学电子学研究的动力来自于"婴儿潮"人口的老化及他们的医疗需求。这一局面刺激了新型生物技术的快速发展,以及在预防医学领域创新的医疗诊断与治疗方式的采用。后来,植入技术与先进无线电子媒介将有助于减缓今天社会高涨的医疗费用,使我们今后更健康长寿。

  本文第一部分讨论了眼睛和耳朵,本部分将讨论大脑、心脏和肺,技术的发展将改善工程、生物以及医学之间的桥梁,增强这些器官的功能。

  本文将揭示出新装置的微型化、便携能力、连接性、人性化、安全以及可靠性是如何推动这方面的尝试,从而改善人体中那些老化或带病/损伤器官所要求的脆弱性质与微妙平衡。

  大脑

  对于癫痫、帕金森症(PD)甚至强迫症(OCD)患者,闭合深脑刺激(CDBS)是一个实现生物医学电子解决方案的优秀例子,它改善了那些遭受这些痛苦折磨的人们的生活质量。

  DBS系统通过检测病人的脑电波(EEG),自动产生DBS电脉冲,防止癫痫的发作,甚至帮助减轻PD的震颤。DBS向大脑的不同区域发送特定的刺激。DBS用于那些拒绝药物治疗的病人,以及有症状波动和震颤的病人。

  迄今为止,只有Medtronic公司有通过FDA批准的DBS产品。他们的双侧大脑DBS装置于2002年通过了FDA的批准,带有两个神经刺激器,每个用于一个大脑半球。与心脏起搏器类似,DBS用一个神经刺激器产生并提供高频的电脉冲,通过延长线与电极,送至大脑中的丘脑下核(STN)区或苍白球内侧(GPi)部分。Medtronics的Soletra神经刺激器是最先进的电池供电装置之一。

  神经刺激器通常要由受过训练的技术人员在手术后编程,以寻找减轻帕金森症状的最有效信号参数。图8是Medtronic公司标准DBS产品的一个简单框图。

  建议CDBS基本设计如下:

  CDBS装置可以直接与记录、刺激电极连接。8个记录电极被植入到运动皮层中,64个刺激电极被植入到大脑的STN部分。这种64通道可单点控制的刺激能够获得各种刺激模式,最有效地治疗帕金森症状。

  从植入微电极获得的神经信号要用8个前端低噪声神经放大器(LAN)做调整。由于神经脉冲的幅度小,有时要用集成前置放大器去放大这些小信号,然后再做数据转换。前端设计需要低噪声,以保证信号的完整性。

  前端的带通LNA通常增益为100量级,而LNA的输入设计需要尽可能减小1/f噪声。可以将一种开关电容技术用于电阻模拟和1/f降噪。开关电容电路对信号做调制,这样1/f噪声就可以降低为热噪声。开关电容的放大滤波器能够同时很好地记录神经脉冲和场电势。

  多个LNA被复用到一个大动态范围的对数放大器前端,进入一个模数转换器(ADC),从而不必做模拟自动增益控制。

  为了覆盖大脑刺激所产生的小信号神经脉冲以及大信号局部场电势(LFP)响应的整个范围,大动态范围ADC需要对所有需要的神经信息做数字化。ADC前端所使用的对数放大器能够达到所需的动态范围。对数编码非常适用于神经信号,并且有效率,因为大动态范围可以用一个短字长来表示。为了节约面积和功耗,采用了相对较大动态范围的ADC,因此就不必采用模拟自动增益控制。

  ADC需要一个数字滤波器,用于将低频神经场电势信号从神经脉冲能量中分离出来。这个工作可以采用一个22个接头的有限脉冲响应(FIR)Butterworth型数字滤波器。

使用数字滤波器而不是模拟或混合信号滤波器有很多优点。首先,数字滤波器是可编程的,因此可以调整其运行,而不用修改硬件,而模拟滤波器只有修改设计才能做更改。数字滤波器用作双工器,将脉冲与LFP的两个

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top