论机器视觉与图像分析技术
动的图形化应用开发软件包之一。虽然业界中的一些人对这种不愿改变的倾向颇有微词,但要问一问自己,如果你聘请来处理某种设备的咨询专家第一次尝试使用新软件包来完成你的工作的话,你的感受如何呢?
即使在各种基于图形的工具当中,供应商们也把那些真正提供可编程能力的和那些仅允许用户配置设备的区分开来。这种可配置的方法能让你更快捷地使设备运行,并能提供许多开发者所需的灵活性。编程功能可为开发者提供更大的灵活性,但却会延长开发时间-特别是对于那些第一次使用一种工具的人来说更是如此。在某些情况下,可配置的方法和可编程的方法都以同样的语言产生输出,从而使你能利用编程功能来修改或提高你用可配置的方法创建的设备(图2)。这样的灵活性的潜在好处是巨大的:你可以使用更强大的工具来完善某种设备,并可借助基本的工具,迅速使之在原始级工作。这种方法可降低在完善方法上浪费时间的可能性,而你后来发现这些方法存在根本缺陷。

图2 利用Data Translation公司的Vision Foundry进行设备开发的主要替代技术例证了工具箱的优越性,工具箱使你可以利用可配置的基于菜单的交互式工具快速验证概念,然后再通过编程功能改进其设备。在Vision Foundry中,你可以通过编写直观的脚本来完成大部分编程任务。
正在发生的调整
也许更重要的是如何利用两种方法的轻松互换使用来简化许多机器视觉设备中正在进行的不可避免的调整。例如,在AOI (自动光学检验)中,你或许希望剔除任何与KGU不同的UUT (被测单元)。唉,如果采用这种策略,检验过程大概会剔除你生产的大部分单元,即使其中大多数单元具有可以接受的性能。说明由于次要差别而导致AOI系统剔除一个优质部件的简单例子就是UUT使用的某个元件的日期代码与KGU上的等效元件的日期代码不同。
此时,你可在设备的设计期间预见到数据代码问题,并确保系统忽略包含日期代码的区域内的图像差别。遗憾的是,尽管如此,其它次要差别更难预料,你必须预计到你发现这些次要差别时需要修改设备。实际上,一些AOI系统的软件几乎能自动地进行这样的修改;如果你告知系统它剔除了优质单元,则软件就会将单元的图像与原始KGU进行比较,并在有差别的区域内不再对随后的单元进行检验。
不过,这样的方法有时候会产生并不令人满意的结果。假设检验系统安装在一间有外部光线可以从窗户进入的房间内,从而使UUT的照度发生变化。虽然检查员可以不假思索地适应这种变化,但是这样的变化会导致视觉系统将相同物体的图像分为不同物体的图像,从而引起不可预料的检验失败。尽管遮住窗户可以防止外部光线进入,但是调整测试程序使KGU在各种照明极端情况下都能通过也许更加经济合算。
即使如此,这个例子也指出了照明在机器视觉和图像分析中的重要性。照明本身就是一门科学或艺术。各种各样的照明技术具有不同的优点和弱点,而对UUT的照明方法可以解决或改进普通的机器视觉问题。
项目成本及时间期限
机器视觉项目的成本相差很大。有几个这样的项目的成本不超过5000美元,其中包括硬件、预包装软件开发工具以及设备开发者的工时成本。不过,如此低廉的项目成本很可能不包括为了达到满意性能而对设备进行调整和调试的成本。在成本范围的另一端,项目成本超过一百万美元。这类项目中最常见的可能就是在汽车和航空工业中对自动生产线的重大改进。根据一些供应商说,最常见的项目成本通常从数万美元到略高于十万美元不等。从管理层批准项目启动到视觉系统在生产中正常使用的项目期限通常不到六个月,而且常常只有一两个月。
并不令人惊讶的是,几乎所有视觉项目都从获得基本问题的答案开始。这些问题的答案充分地确定了视觉系统硬件的成本:需要多少台摄像机?必须具有多高的图像分辨率?彩色成像是否必要?每秒必须采集多少帧?用不用产生模拟输出的摄像机?如果这样,就需要选择一个帧接收板来将模拟信号转换成数字形式,在必要时还要图像帧的采集与外部触发事件同步(参考文献2)。
尽管一些用于模拟摄像机的帧接收器可以同时接收来自多个摄像机的输入,但是一次为一台摄像机提供一个接口的电路板更为常见。如果你选择具有数字接口的摄像机,你会使用能够进行图像处理和图像采集的"智能"摄像机吗?还是由摄像机将原始(未处理的)图像数据发送到主机PC进行处理?还有,数字摄像机采用哪种接口标准或总线与主机PC通信呢?适用于某些总线的数字摄像机需要帧接收器。但是,与用于模拟摄像机的帧接收器不
- Atmel针对工业机器视觉应用推出快速CMOS相机(10-22)
- 工业机器视觉系统市场迅猛发展,行业应用新视点逐步扩大(11-06)
- 基于DSP和FPGA的机器视觉系统设计与实现(03-07)
- Xilinx用于工业自动化的机器视觉解决方案(11-30)
- Xilinx多协议机器视觉摄像机参考设计(12-01)
- 德州仪器(TI)3D机器视觉参考设计(11-30)
