揭秘RF功率器件的设计及应用要点
非线性模型,这个非线性模型是从与偏置有关的S参数测量中提取出来的。精密的分层(deem-bedding)技术被用来描述和去除多重性以及外部组成部分,从而提取非线性模型。飞思卡尔采用Root模型和MET型来描述非线性模型。MET模型的热模型是通过改变裸片温度范围的测量来决定的,并且与非线性点模型自相容地耦合。在普通CAD工具中,MET模型是RF功率晶体管的事实标准非线性模型。
在封装内匹配网络中,无源器件的模型是由线性S参数测量和电磁仿真决定的。利用高精度红外(IR)显微镜的测量结构生成封装和散热器的热模型。
当模型生成之后,通过比较模型预测与在模型生成中未被采用的独立测量数据,开始确认模型工作的最后步骤。飞思卡尔基于其负荷拉移测量能力,制订出一套行之有效的方法来确认它的大信号模型。本质上说,CAD工具被用来模仿大功率器件在负载拉移测试期间观察到的环境。在非线性谐波平衡仿真过程中,对基频和谐波频率下的待测器件(DUT)的负载拉移S参数进行同步,以提出负载阻抗。测量和建模能力的配合有助于优化模型,以匹配测量结果。
图8和图9是与图6类似的硅LDMOS晶体管模型确认的例子。该器件已经被设计用于860和960MHz频段N-CDMA、GSM和GSM/EDGE基站应用,且在典型的GSM应用中具有28V电源电压和1,200mA静态漏电流。该晶体管在1dB压缩点能提供160WCW功率。该晶体管包括三个有源裸片,具有大约270mm的栅长。封装中包括了输入匹配网络,这个T型网络采用78个邦定线和MOS电容。组成组成部分的模型如前所述,然后利用这些组成部分构建完整的模型。确认部分包括了大信号模型和双音仿真,它在脉冲条件下实现,以提供恒温环境。在同样热条件以及输入和输出负载条件下进行了负载拉移测量,并将测试结果与仿真结果比较。输出功率、三阶互调失真(IM3)、功率附加效率(PAE)以及转换器增益的测量和仿真如图8和9所示。采用分别在最大功率附加效率和最大输出功率下谐振的已封装晶体管,来实现功率扫描或拉升测量。在测试条件范围内,测量和仿真结果非常吻合。
塑料封装
大功率RF和微波半导体晶体管一般采用OMP封装或气腔封装封装。用于大功率RF和微波应用的晶体管要消耗大量的功率,因此它工作时的结温很高。在封装设计过程中,必须遵守严格的热机械设计要求,以确保该封装可以发散晶体管产生的大量热量,而不会使其电性能下降。此外,封装必须坚固,具有很高的机械强度以保证蜂窝基站和广播系统的可靠性。
典型的气腔封装和OMP封装如图10所示。塑料封装晶体管的内部成分是超模压低损耗塑料材料。虽然新的功能性更强的多级大功率RF IC具有更多引脚,但大部分大功率晶体管封装采用两个或四个引脚。封装针对引脚而设计,以便放置在PCB顶层微带传输线上。法兰焊盘的背面一侧接触功率放大器的散热器,形成与微带线底面连接器相连的导电连接,以及与散热器连接的导热连接,后者使得热量从封装晶体管传导出去。
气腔封装是最昂贵的功率晶体管封装形式,这归结于气腔封装所采用的材料。由于功率晶体管是RF功率放大器中最贵的组成部分,所以这些气腔封装通常是设计和材料开发过程中降低成本的目标。
过去六年以来,飞思卡尔已经系统地重新对气腔封装进行工程化,采用新的材料进行设计,以提高性能并将降低封装成本。2004年,飞思卡尔在其封装中对散热器材料做了改变,将热性能提高了15-35%。这一性能改善使业界很快接受了改善后的封装设计。
随着用于大功率RF晶体管塑料封装技术的创新开发,飞思卡尔进一步降低了封装成本。采用OMP封装解决方案,飞思卡尔可以提供在2.1GHz下具有130W功率的RF晶体管,与金属陶瓷气腔封装产品进行竞争。迄今为止,已有超过3,000万个超模压封装RF功率晶体管交付使用。此外,飞思卡尔提供超过12个不同封装方案以及OMP封装技术中的引脚配置,可实现各种功率RF IC产品。
这些OMP晶体管完全适用于传统的大功率RF应用。封装、材料和生产工艺的基本设计来自于飞思卡尔为最苛刻的环境条件而设计的大功率汽车和工业用封装技术。这些封装设计可达到超过1,900年的平均故障间隔时间(MTBF)。OMP封装的机械公差很小,相对传统的气腔封装,其公差指标有很大改善(高达50%)。很小的尺寸公差以及优异的湿度灵敏度等级(MSL)额定值使这些封装适合于放大器装配的自动化PCB生产。
有了