微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 揭秘RF功率器件的设计及应用要点

揭秘RF功率器件的设计及应用要点

时间:03-21 来源: 点击:

二代(2G)和第三代(3G)无线测量。实现CW、脉冲以及调制信号测量的要求来自于这些信号在器件上产生不同热负载的事实,因此,对每个调制格式优化的负载阻抗也是不同的,如图3所示。除这一广泛的测量能力以外,飞思卡尔已开发了独具价值的数据输入和后处理工具,使用户能够快速分析二维或三维平面下被测试器件(DUT)的行为(图4)。

RF功率器件的设计及应用

脉冲VNA负载拉移技术被用来测量飞思卡尔公司广泛的功率晶体管产品,包括170W WCDMA器件MRF7S21170H。该器件的负载拉移功率等高线显示,1dB压缩点的脉冲输出功率高于+53dBm(200W),2.14GHz频率下的增益为19.94dB(图5)。由于具有这些技术,MRF7S21170H的最终匹配网络设计变成非常简单,只需为同时优化功率密度、增益、效率,以及综合的匹配网络而选择负载和源阻抗。

功率器件的建模

设计面向现代通讯和广播系统、工业、科学和医疗应用,以及航空电子和雷达市场的RF功率放大器(PA)是一个很大的挑战,设计工程师必须满足提高RF功率放大器能效的目标,并同时满足严格的调节(比如线性)和对更低成本放大器的需求。

基于AB类工作模式的传统放大器正被采用Doherty和包络跟踪等结构的效率更高的设计所代替,后者可以工作在非线性模式下,例如D类、E类、F类以及其它工作模式等。效率更高、线性度更高、成本更低,这些相互矛盾的要求意味着设计工程师必须进行多方面的折衷。如此艰巨的任务只能采用基于经验或"试凑"的办法来完成。设计工程师必须转向计算机辅助设计(CAD)技术以及电路仿真来优化设计。在射频功率放大器设计中越来越多地采用CAD方法,使得设计更多地依赖于精确晶体管模型。越来越多的公司利用CAD方法来显著缩短产品上市时间,并增加设计的鲁棒性以应对工艺和生产参数的变化。对半导体生产商而言,及时提供精确、非线性、电热模型已成为在可相互替代的供应商中脱颖而出的关键。

采用飞思卡尔的大功率射频晶体管的功率放大器设计工程师,可以得到飞思卡尔具有全面经验的射频建模团队的技术支持,并获得非线性电热晶体管模型。可以从该公司的RF大功率模型库www.freescale.com/rf/models在线获得模型。很多CAD工具都支持这些模型,包括安捷伦的EEsof ADS和Genesys、Advanced Wave Research公司的Microwave Office、AWR公司的Analog Design Tool、Ansoft公司的Ansoft Designer。

RF功率器件的设计及应用

具有封装内匹配网络的典型分立射频晶体管如图6所示。这个匹配网络通过将晶体管裸片的低输入阻抗和输出阻抗转换为更实用的输入阻抗和输出阻抗值,来提高产品的易用性及性能。这些匹配网络采用小直径邦定线和金属氧化物半导体(MOS)电容来构建,最大的射频/微波功率晶体管包含有100到200个邦定线和几个MOS电容。大功率RF IC则采用片内螺旋电感、电容和传输线来构建匹配网络。

匹配网络引入了高Q值谐振电路,以进行所需的阻抗变换。邦定线阵列的轻微变化会导致谐振频率偏移,这可能影响匹配网络的特性。在许多应用中,由于邦定线仅提供封装引脚和封装内半导体器件之间的导电互连,所以被看作是寄生元件的一部分。但在RF功率晶体管中,邦定线不再是寄生元件,而是设计不可分割的一部分,因此必须对其进行准确建模。

RF功率器件的设计及应用

大功率RF和微波半导体晶体管一般采用气腔封装或超模压塑料封装(OMP)。这些封装可保护内部电路免于外界环境的影响,并有助于消除晶体管有源电路区所产生的热量。此外,这些封装还是低损耗匹配网络的组成部分。在所有半导体器件中,用在无线基础设施的晶体管产生的热量最大,而且重要的是,这种自热效应已体现在非线性晶体管模型中。

开发这些封装晶体管的非线性电热模型,使最复杂的测量和仿真技术成为可能。成功的建模还必须解决一些问题,包括匹配网络中组成部分之间以及邦定线阵列之间的电磁交互作用、热管理、器件热模型与电模型的自相容集成,以及建立晶体管本身的非线性模型等。

飞思卡尔采用分割的方法来开发模型,在这种方法中,封装晶体管被认为是可以分为更小组成部分的系统,如图7所示。每个组件被分别建模,然后独立的模型被集成到代表封装器件的单一模型中。这种方法降低了计算负荷并建模复杂性,并表征了内部器件耦合的特性。这些特性包括在最终的模型中,以提高仿真精度。

RF功率器件的设计及应用

封装晶体管模型的核心是本征晶体管的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top