光伏电站限电损失情况如何应对?
析,该系数为2%至10%不等)。通过此方法估算其他逆变器的限电损失量,累加可得整个电站当天的限电损失量。
③需要注意的是由于通讯异常、方阵发电异常、逆变器停机等带来的损失不属于限电损失,需要计算故障损失发电量,并从限电损失量中减去该值。
上述计算方法得当的限电损失量为估算值,如果没有标杆逆变器,可通过实际辐照度、环境温度和实际系统效率来估算电站的理论应发电量,并减去当天的实际发电量可粗略作为限电损失。
3.限电技术对策
目前针对上述限电问题,在技术层面可在原有并网电站引入储能环节,以储能补偿实际光伏输出功率与限定有功功率的差额,降低限电损失量,储能系统根据耦合方式的不同,分为直流侧耦合和交流侧耦合,如家庭户用小型储能系统光伏在直流侧耦合,而对于大型地面电站,一般以交流侧耦合为主。下文简要介绍交流侧耦合的充放电判断依据和容量配置估算。
参考下图4左,横线阴影部分表示能量输入储能装置,对其进行充电,能量来源于光伏电力。竖线阴影部分表示能量从储能装置输出,进行功率补偿,如此以来,光伏逆变器输出到电网的功率曲线为平滑直线,当然这个是最理想的情况,实际上很难达到平滑状态。图4左中红色直线为省调(地调)下发的功率限电值(如上述100MW电站,200台逆变器,限定值50MW,AGC分配均匀,那么每台逆变器当天最大交流输出不能超过250kW),蓝色虚线假设为光伏逆变器的实际输出功率。
在电池能量管理系统中可设置目标值P1,P1=总限电功率值/逆变器台数(单位:kW),系统可与逆变器进行实时通讯,并实时监测光伏逆变器的交流功率输出P2(单位:kW),当P2和P1满足下列关系时,实现充放电。
基本原则:当P2>P1时,充电,当P2<P1时,放电。对于该判定依据,遇到晴天,光伏曲线一般较为规则,容易实现;而如果遇到多云天气,光伏出力容易波动,会使得电池反复充放电,影响寿命,可通过相关策略来细化控制。需要注意的是储能系统和逆变器的通讯响应时间尽量要短,因为光伏的出力时刻都在变化,如果储能系统响应时间长,接收到的P2值为下一时刻值,那么补偿的容量可能比应补偿的量要小。
电池容量配置的计算,对于上述甘肃某电站500kW逆变器,可假定理想情况下如晴天天气,储能电池在满足上述条件时实现充电,该时段有6-7个小时左右,如果多云天气可能无法充满,但遇到阴雨天气就无法进行充电(图4右),实际放电多少以所充容量为准,特别是连续阴雨天时,会无法充电和放电,只能等到晴天天气再充电。
图4 光伏储能方案原理
对于上述甘肃电站实例,光伏发电在时间段7:30-9:15和16:55-19:10共计约4h左右,实际光伏发电483kWh,增加储能系统后,电池放电容量可计算得:558.65/0.97=575kWh(假设储能逆变器转换效率97%),占当天发电量的24%,但仍剩有461kWh未补偿。对于一台500kW逆变器,储能电池容量可配备500kW*2h储能单元,但还需要考虑到电池放电深度和逐年衰减率。
上述考虑的情况是基于AGC均匀分配的情况下,但事实上AGC不可能均匀分配,假设A逆变器限定有功250kW,B逆变器限定有功200kW,如果按照功率大于250kW充电策略,红绿线与功率曲线包围的面积这部分电力无法被电池储存,遇到逆变器限定功率分配不均的情况,可选取合适值,使得整个电站的功率补偿最大化,参考图5。
图5
从电池容量配置角度,需要考虑限电比例和限电损失部分,当限电40%,按照50%限电容量配置,如果遇到连续的晴天天气,会造充电容量过多而浪费,同样参考图5,当目标直线越往下,A和B区域所包围的面积就越小,电池需要放电的能量也就相应减少。因此需要统计一年内的限电比例,阴雨天天数,选择合适的容量配置,使得投入和产出达到最佳经济效益。
储能系统作为限电的解决方案之一,目前已经有非常成熟的技术,如比亚迪和阳光电源等厂家,其投资收益的计算需要考虑一年当中的晴天、阴雨天的天数,限电损失量,可补偿量,电池衰减等因素来综合确定。
4.小结
本文简要介绍了在当前限电大环境下的光伏发电量的限电损失计算,并引出储能技术对策,文中所述储能方案和常规的"削峰填谷"应用有所不同,关于容量配置和储能系统的相关建议如下:
1.首先需要考虑当前电站的AGC分配策略,遇到逆变器限定功率分配不均的情况下,选取合适值,使得电站整体的功率补偿最大化。
2.储能电池容量的配置需要考虑AGC的分配策略、电站一年的限电损失和比例、可补偿容量等。
3.对于交流耦合模式,储能系统需要实
- 应用于太阳能光伏电站并网逆变电源系统(09-15)
- 集中式逆变器和组串式逆变器选型之比较(03-30)
- 光伏电站开发思路及设想(06-22)
- 灰尘对光伏电站效率影响究竟多大(11-28)
- 刘应宽:未来10年我国太阳能光伏发电发展空间巨大(09-22)