微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 可穿戴设备的健康监护设计方案

可穿戴设备的健康监护设计方案

时间:05-29 来源:互联网 点击:

运动腕表和护腕将很难消除运动伪像。光学传感器(LED和光电检测器)和皮肤之间的相对运动会降低光信号的灵敏度。此外,运动的频率分量也可能会被视为心率测量,因此,必须测量该运动并进行补偿。设备与人体相贴越紧密,这种影响就越小,但采用机械方式消除这种影响几乎是不可能的。

  我们可使用多种方法来测量运动。其中一种是光学方法,即使用多个LED波长。共模信号表示运动,而差分信号用来检测心率。不过,最好是使用真正的运动传感器。该传感器不仅可准确测量应用于可穿戴设备的运动,而且还可用于提供其他功能,例如跟踪活动、计算步数或者在检测到特定g 值时启动某个应用。

  ADXL362 是一款微功耗、3 轴MEMS(微机电系统)加速度计,非常适合在电池供电型可穿戴应用中检测运动。内置的12 位ADC可将加速度值转换为数字信号,分辨率为1 mg。功耗随采样速率动态变化,当输出数据速率为100 Hz 时功耗仅为1.8μA,在400 Hz时为3.0 μA。这些较高的数据速率对于用户接口来说非常有用,例如单击/双击检测。

  对于在检测到运动时启动某个应用的情况,则无需进行高速采样,因此可将数据速率降至6 Hz,此时平均功耗为300 nA。因而,对于低功耗应用和不易更换电池的植入式设备来说,此传感器非常有吸引力。ADXL362 采用3.0 mm × 3.25 mm 封装。图3显示了不同电源电压条件下电源电流与输出数据速率之间的关系图。

  图3. ADXL362电源电流与输出数据速率的关系

  系统的核心是混合信号片上计量仪ADuCM350,它与所有这些传感器相连,并负责运行必要的软件,以及储存、显示或传送结果。该器件集成高性能模拟前端(AFE)和16 MHz ARM Cortex-M3处理器内核,如图4 所示。AFE 的灵活性和微处理器丰富的功能组合使此芯片成为便携式应用和可穿戴应用的理想选择。可配置的AFE 支持几乎所有传感器,其可编程波形发生器可使用交流或直流信号为模拟传感器供电。高性能的接收信号链会对传感器信号进行调理,并使用无丢码16 位160 kSPS ADC 将这些信号数字化。其中,后者的积分非线性(INL)/差分非线性(DNL)最大值为±1-LSB,。该接收信号链支持任何类型的输入信号,包括电压、电流、恒电势、光电流和复阻抗。

  

  图4. 集成AFE的Cortex-M3

  AFE可在独立模式下工作,无需Cortex-M3处理器干预。可编程时序控制器控制测量引擎,测量结果通过DMA 储存到存储器内。开始测量前,可执行校准程序,以校正发送和接收信号链中的失调和漂移误差。对于复阻抗测量,如血糖、体质指数(BMI)或组织鉴别应用,内置DSP 加速器可实现2048 点单频离散傅里叶变换(DFT),而无需M3 处理器干预。这些高性能AFE 功能使ADuCM350 具有其他集成解决方案无可比拟的独特优势。

  Cortex 处理器支持多种通讯端口,包括I2S、USB、MIPI 和LCD显示驱动器(静态)。此外,它还包括闪存、SRAM 和EEPROM,并且支持五种不同的电源模式,可最大程度地延长电池使用寿命。

  ADuCM350 设计用于超低功耗传感器,性能限制为低速器件。对于要求更高处理能力的应用,可使用工作频率高达80 MHz 的M3内核或者Cortex-M4 处理器内核。

  功耗如何?

  功耗一直是便携式设备和可穿戴设备中的一个关键因素。本文介绍的设备在设计上要求性能高、尺寸小且功耗低,但在非常小的封装内集成所有一切器件(包括电池)仍然是一个挑战。尽管新的电池技术实现了每mm3 更高的容量,但与电子产品相比,电池仍然体积较大。

  能量采集可减小电池尺寸并延长电池使用寿命。能量收集技术有多种,包括热电、压电、电磁和光电等技术。对于可穿戴设备,利用光和热最为合适。传感器通常不会产生大量输出功率,因此每焦耳热量都应当可以被捕获和使用。ADP5090 超低功耗升压调节器(如图5 所示)桥接收集器和电池。此高效开关模式电源可将输入电压从低至100 mV 升高到3 V。冷启动期间,在电池完全放电的情况下,最小输入电压为380 mV,但在正常工作时,如果电池电量没有完全耗尽或者还有一些电能留在超级电容内,任何低至100 mV 的输入信号都可转换为较高的电位并储存下来,以供稍后使用。

  该芯片采用微型3 mm × 3 mm 封装,并可进行编程来支持各种不同的能量收集传感器。最大静态电流为250 nA,支持几乎所有电池技术,从锂离子电池到薄膜电池以及超级电容均可。集成式保护电路可确保其安全运行。

  

  图5. ADP5090能量采集器

  结论

本文介绍了一些用于可穿戴和个人健康应用的低功耗产品,但这个快速增长的市场正在快速变化

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top