微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 可穿戴式生命体征监护设备的研制

可穿戴式生命体征监护设备的研制

时间:02-18 来源:传感技术学报 点击:

信号进行调制,对调制信号进行放大、解调和滤波后可获取呼吸信号。

  血压检测采用无创袖套间接方式,可同时检测收缩压(SP)、平均压(MP)、舒张压(DP)3个血压指标,其测量范围为0~250mmHg(0~33.33kPa)。

  血氧饱和度检测采用指端脉搏光电检测法。根据朗伯一比尔定律(Lambert-BeerSlaw),单色光透过均匀溶液后的透射光强与溶液参数有关。还原血红蛋白与氧结合后,对某一波长色光的吸光系数将发生很大变化。因此,在入射光强度不变的情况下,透射光强度的变化反映了血氧饱和度的变化。在设计时,我们利用MSP430的时钟控制端口产生逻辑时序控制红光和红外光二极管工作,通过检测透射光强度实现对血氧饱和度的测量。体温测量采用美国DALLAS公司生产的高精度集成温度传感器DS1624,它具有分辨率高(可达0.03℃)、外围电路简单、输出直接为数字信号等特点。

  两个微处理器模块选用两个MSP43OF149芯片,一个用于实现对各参数采集模块和LCD显示的控制;另一个用于无线通信模块的控制,并与芯片CC2420组成一个无线通信节点。

  另外,为了减少设备的体积和功耗,舱内终端机采用单色超低工作电压LCD屏,实时显示心电、脉搏等生理参数波形。终端设计采用锂电池供电,工作电压为+3.3V。


  2 软件系统功能与设计

  2.1功能要求与功能分布

  基于Zigbee星型网络无线通信协议IEEE802.15.4,可穿戴式医疗监护设备的软件系统主要具备控制程序、通信软件和用户界面等三大功能,具体分布在PC控制主机程序、网络协调器软件和传感子节点软件中,如图5所示。

  网络协调器软件在TI公司提供的MSP430开发平台IAR上用标准C语言实现,用于传输中央监护平台至指定ID的传感器模块,分配通信时隙,发送时间同步所需的信标消息;接收指定ID的传感器采集数据,并进行数据融合,向中央监护平台前转融合后的生命特征参数。

  无线通信节点软件无线传输模块每5ms(200Hz)间隔就中断请求子传感器板卡采集一次数据,每100ms(10Hz)间隔就中断请求子传感器板卡按规定格式传输一次数据。应该注意的是,子传感器板是多参数采集传感器协同工作,要求能同时进行多个体征参数测量,无线通信节点软件配置串口为UART模式,传输速率为115.2kbit/s,免除了数据的冲突、丢失或错误。

  子传感板软件在软件设计中,结合人体生理参数变化较缓慢的特点,充分利用硬件定时器及软件定时器,通过定时中断进行多传感器数据采集和多通道采集数据传输流程设计,保证了高精度、实时性和高可靠性的数据采集与传输。

  中央监护界面通过中央监护界面可实现主节点对WSN的参数配置、接收主节点传来的采集数据、利用主机的处理能力对数据进行存储、处理、识别、评估和报警等。本监护设备的中央监护界面采用VB开发实现,如图6所示。

  2.2系统软件流程

  传感节点软件和传感器协调器软件的程序流程分别如图7和图8所示。本流程在IEEE802.15.4协议基础上,结合TDMA技术和无线传感器网络S-MAC协议思想而设计。从图7可以看出,为了节省传感节点的能耗,除加人网络请求、发送数据和侦听同步信标帧时段外,传感节点均处于休眠状态。



  为了满足应用要求,网络协调器设定1s的超帧(superframezT_sfc-=Is)周期,每个传感节点有保留的50ms时隙(timeslot),来传输数据,如图9所示。超帧周期以网络协调器发送的信标消息(bea—conmessage)起始,信标消息含有时间同步信息。每个传感器节点在下一个预期的信标到来前,才唤醒它的射频接口为接收模式。显然,在TDMA时隙帧结构工作模式下,系统的时间同步要求较高,需要设计专门的时间同步协议。



  3 时间同步协议设计与实现

  在多参数采集传感器节点协同工作的可穿戴式监护系统中,分布式采样、集中式信号处理与数据融合、有效的通信信道共享和传感器节点需要可行的时间同步机制。现有的时间同步协议包括参考广播同步(RBS)、延迟澳4量时间同步(DMTS)、传感器网络同步协议(TPSN)和洪泛时间同步协议(FTSP)等。综合考虑系统的鲁棒性、稳定性、收敛性和计算复杂性等因素,本设备选用洪泛时问同步协议FTSP进行设计和实现。FTSP动态地选择一个根节点,周期性地发送时间同步消息,当一个节点接收到时间同步消息,它重新广播这个消息,使时间同步消息泛洪整个网络。该协议还用线性回归来估计时钟漂移,通过在MAC层插入时间信息以改进同步精度。

在如图1中,主节点(协调器)作为标准时间源,应该注意,当时间产生并加入到消息中时

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top