集崭新的超宽带(UWB)无线通信技术
iTIon Modulation)为例作为一个举例分析。
首先定义一个单周期脉形:
s(k)代表信号kth,w(t)为传输的单周期脉冲。
将其移至每一帧的开始:
Tf代表脉冲重复周期,j表示第j个单脉冲。
加入伪随机跳时码:
最后加入调制数据:
其中,d(k)是信息数据,δ为时移。为了满足多用户的需求,提高通信的安全性和对系统功率谱密度PSD(Power Spectral Density)的考虑,引入了跳时码,下面就从功率谱密度的角度来分析这个问题。
假设采用图1(a)给出的高斯单脉冲作为发送信号,且只是一串周期性的脉冲序列,由于时域信号的周期性导致其频域出现了强烈的能量类峰,这些类峰将对现存传统的无线信号造成干扰。因此需要采取某种措施将其平滑。如果采用PPM调制对脉冲的位置做出调整,可以看到:由于调制的置乱效果,频域的尖峰得到了一定的控制,但此时仍比较明显。为了进一步降低类峰的幅度,引入跳时码,这样发送信号的功率谱就会得到进一步的平滑,几乎近似于背景噪声,这也正是UWB系统能与现存无线系统并存的原因之一。图2给出了上述不同信号的PSD图和引入跳时码后的时域波形。
除PPM外,UWB信号还可以采用脉幅调制PAM(Pulse Amplitude Modulation),开关键OOK(On-Off Key)和二相移键控BPSK(Bi-Phase Shift Key)等。在接收端,单脉冲信号可以通过相关技术实现可靠接收。实际应用中常使用相关器(correlator),它用准备好的模板波形乘以接收到的射频信号,再积分就得到一个直流输出电压。相关器输出的是接收到的单周期脉冲和模板波形的相对时间位置差,从输出中寻找时间位置差为0的即为要接收的信号。
为了追求更高效率的信息传输,近来人们提出了一种新型脉冲调制方式——脉形调制PSM(Pulse Shape Modulation)。PSM就是对脉冲的形状进行调制从而实现信息的载荷,因此脉冲形状的选择是十分重要的。它的提出得益于人们对hermite多项式的研究。由于hermite多项式的数学表达式与高斯单脉冲很接近,而且随着阶数的变化,波形的持续时间不会有很大的变化,因此人们便想到了用hermite多项式数的变化产生形状各异的脉冲,实现多元化的调制。为了寻求正交的波形,需对hermite多项式进行修正,即:
经过改动之后,便可以得到彼此正交的各阶hermite多项式了。这时可以在发送端同时发送n个不同形状的单脉冲,正交性使其互不干扰,接收端用相关接收技术即可把每一个信号分离出来。
图3给出了改进型hermite多项式时域波形。与此同时还可以通过搭建simulink电路得到想要的各阶hermite多项式脉冲。如图4给出了搭建电路和仿真波形。在simulink电路中,Hermite多项式的阶数由脉冲阶数单元控制,示波器1、2给出相应阶数和相应阶数减1阶的hermite脉形。
传输效率的提高带来系统性能的下降,这是许多系统所不能容忍的,因此需要进行编码。首先在形域采用BCH(7,4)对信号编码,这样一来传输速率是单脉冲的4倍,而误码性能则与单脉冲基本相同,随后在时域对信息帧进行BCH(31,11)编码,使性能进一步提高,最后还可以在时域和形域联合编码,误码性能会得到大幅度的改善,而传输效率仍然高于单脉冲系统。性能曲线如图5所示。
4 应用前景和发展方向
凭借自身的众多优势,超宽带技术具有广阔的应用前景,UWB首先在美国军方和政府部门得到了实质性关注,并迅速应用于美国军队的无线电台组网(Adhoc)和高精度雷达检测系统中。2002年2月FCC准许UWB技术进入民用领域,条件是:"在发送功率低于美国放射噪音规定值-41.3dBm/MHz(换算成功率则为1mW/MHz)的条件下,可将3.1G~10.6GHz的频带用于对地下和隔墙之物进行扫描的成像系统、汽车防撞雷达以及在家电终端和便携式终端间进行测距和无线数据通信"。尽管该技术在应用中有如此多的限制,但它仍受到广大电信开发商的青睐。Time Domain和Multispectral Solutions等公司已经向IEEE-802.15委员会提出了采用超宽带技术的议案,众多公司的研究部门乃至学校也都将该技术的研究提到了日程中来。许多现已成熟的技术纷纷与UWB进行结合,如UWB-OFDM、UWB-Ad hoc、UWB-Wavelet、UWB-Neural network等,有的公司甚至已经利用这些技术生产出了实际的民用产品。
图4
笔者把超宽带技术的应用归纳为短距离无线通信、雷达探测和精确定位三个最主要的方面。其中在短距离无线通信中可用于密文传送、音/视频流传输、射频标签识别以及无中心自纺织网络(Adhoc)的物理层等领域;雷达方面主要用作防撞雷达检测、精密测高学、穿墙成像和探地雷达系统;精确定位则可用于资源跟踪和全球定位系统GPS(Global Position System)。由此可见,UWB技术的背后蕴藏着巨大的商机。
- 智能家居主流技术应用分析(04-12)
- 物联网无线通信技术盘点 蓝牙/WiFi/Zigbee谁能成主流?(07-03)
- UWB技术在医疗设备中的应用(08-22)
- UWB无线通信及其关键技术(10-14)
- 诺基亚研发远程充电技术 可让手机实现“无限待机”(02-25)
- 如何让超宽带(UWB)信号测试变得简单易行?(03-02)