自动驾驶技术到底什么时候能成熟?
这意味者资金周转率的同步提升。
从部署成本上讲,如今大型卡车售价基本在15万美元以上,Otto目前的自动驾驶套件成本大约3万美元,从成本下降空间上看,5年内降低到1万美元是非常有可能的。
技术上,卡车主要运行在高速公路上,而高速公路场景下的自动驾驶技术相对于城市道路要简单得多,传感器可以安装在离地面更高的位置,因此可以探测得更远。因此在这一领域的自动驾驶可以在短时间内达到商业化所要求的成熟度。
虽然精确的成本计算依然需要更多的数据,但上述数据已经能让人相信,基于自动驾驶的物流成本将会降低2倍以上,而资本收益率将可能提高十倍以上。
根据路透社的消息,Uber从明年开始就会提供货运服务,不得不说,Uber的眼光很准。更多的公司开始跟上,欧洲六大卡车制造商(包括沃尔沃、戴姆勒、达夫、依维柯、曼、斯堪尼亚)已经组建超 12 辆车的无人驾驶卡车车队上路测试。
自动驾驶货车可能会深刻改变物流行业,催生例如标准化的装卸站这样的场所,在该场所内,人类司机将负责与刚刚从高速公路出口下来的自动驾驶货车进行货物的交接,完成最后一百公里的运输。
回过头来看Otto的成功,它其实是一个技术与市场结合的漂亮案例。一项技术的研发,一开始也许是面对一个极为长远的目标,但其技术达到一定程度后,在某些场景下就可以产生商业价值了。因此通过限定使用场景,就可以降低技术实现难度,在高速公路货运这个场景下,我们甚至可以进一步降低技术难度,例如使用有人领队的编队行驶,在这一模式中,一名人类司机驾驶头车,后面跟随5至10辆无人车以密集间距行驶,这意味着5~10倍的劳动力效率提升,其商业价值可见一斑。
| 自动驾驶的应用之路
目前公众对于自动驾驶的质疑,其实是有一个假设的前提,那就是允许汽车在任何时候,在任何开放道路上都可以行驶,这无疑是终极目标,但你能想象自动驾驶车如何听从操着方言的交警指挥吗?拿一个最难的场景去评估一项在发展中的技术,自然很容易得出较为悲观的结论,而事实上,正如我们在前面看到的自动驾驶卡车的例子一样,商业价值的产生是有多样化的,在达到终极目标的过程中,或者限定场景,或者限定功能,就有可能将自动驾驶应用落地,产生商业价值。
如果顺着与自动驾驶卡车相同的思路去探索商业化路径,会发现不少行业都可以在短期内可以实现。
仓储物流行业:领先的电商如亚马逊和京东已经部署了AGV;
用于农业的自动驾驶车辆:包括可以进行耕作和收割的农业机械,在非道路上进行低速移动的场景难度很小,转场时可用其它运输车辆转移;
局部封闭场所:如度假村、旅游景区、机场、矿区、码头、建筑工地等,在该应用下的车辆多数是特种车辆,如挖掘机、起重机、小型电动车等。
随着技术的进一步发展,更多的自动驾驶场景将得以实现:
城市公交系统:有固定的行驶线路,例如使用公交专用道,可以有选择地施行自动驾驶。
商业运营车辆:如出租车、公司班车等。
对于私人车辆,其自动驾驶的应用普及也可以按照场景的不同范围逐步扩大:例如先在高速公路上实现;然后是停车场,最后才是开放道路。一份来自通用汽车的调查显示,在超大型城市,30%的汽油浪费在寻找停车位的过程中,而中心城区的停车时间通常超过15分钟,停车场的自动驾驶其实意义很大,而停车场的驾驶环境也相对友好,不存天气因素,速度也低,也是封闭场所,其实现难度明显要比开放道路低。
| 商业化的逻辑
无论自动驾驶的应用场景是什么样,这背后始终有三个核心原则需要满足:技术上成熟度达到该应用场景的要求;投资成本可接受;投资回报达到突破点:相对于之前的有人驾驶,必须能够减少成本或者增加收益,并且这种商业收益是可以被量化的,一句话:部署自动驾驶就意味着省钱或者赚钱,否则只能落入作秀的场景。
因此,自动驾驶的商业化路径,在不同国家也势必各不相同,因为相同的应用场景,成本结构不同,例如出租车行业,美国的出租车人工成本显然要比中国高非常多,这也是Uber在自动驾驶技术的投入上如此激进的原因之一。
在国内,一线城市都在积极推动自动驾驶的测试实验区开发,背后的商业化驱动力不容忽视,北京市超过20%的路面是被汽车所占据的,而一辆私人汽车的实际利用率通常只有不到10%,超过90%的时间里都处于泊车状态,这带来了两个巨大的难题:停车难、拥堵(潮汐式通行,寻找停车位造成的局部路段拥堵)。
解决之道呢,从传统上讲,需要修建更多的停车场,以及更多的道路,而
- ST与Autotalks合力开发V2X测距解决方案(04-30)
- 国内车联网现状解析 如何保证安全?(10-09)
- 这几个v2x技术方案告诉您 如何强占车联网市场先机(02-13)
- 一文了解恩智浦(NXP)的V2X应用方案及技术平台(02-09)
- V2X安全警示系统解决方案(02-09)
- 这几种V2X技术应用方案 绝壁让你大开眼界(02-10)