UWB技术在医疗设备中的应用
和帧来组织传输。UWB传输时隙组合构成超帧(见图4)。超帧分为信标段(BP)和数据传输段(DTP)。信标及有效数据占据超帧的256个媒体访问时隙,一个媒体访问时隙持续256μs,一个超帧持续65.5ms。所有能相互"侦听"到的网络成员都通过收听到的信标来与超帧同步。信标中的信息可视为网络成员的通信通道。
图 2 对一个点对点网络中的三个UWB设备的描述
由于按时隙来组织通道,因此并不需要每个设备每时每刻都在接收和发送数据。一个设备只需每隔65.5ms被唤醒来收听信标;如果该设备没有任何任务,将重新返回睡眠状态,类似于手机延长电池寿命的睡眠模式。这样就延长了电池供电系统的工作时间。
UWB的无线接口很像电缆:如果有多个通信成员而通道又有限,就必须对访问权限进行管理。当打算发送信息到某一通道时,该设备成员需要进行"侦听"以确定该通道是否已被别的设备占用。如果其发现该通道空闲,就发送信息。
当然,有可能两个设备同时侦听该通道,都发现它是空闲的,并同时向其发送信息,这就是所谓的"冲突"。发生"冲突"时,设备将尝试稍后再访问通道。这期间,每个设备在重试前都等待一个随机时长。优先级较高的设备可能比优先级较低的设备先进行重试。这种"竞争访问"机制是20世纪70年代随以太网发明的,也常用于WLAN。显然,如果要以最低延迟持续地传输一段视频流,这种方法就行不通了。
图3 超级帧被划分成 信标段(BP)和数据传送段(DTP)
为确保能无中断地传输视频流,UWB采用了分布式驻留协议(DRP)。由于UWB基于TDMA,网络成员可保留一些固定的时隙(媒体访问时隙)以保障和另一设备的通信。保留通道占用时隙的相关信息在信标时段传送。如果某一时隙被标记为"硬保留",任何第三方都不可占用该时隙。这是保障视频传输要求的确定性数据传输速率所必须的。
实施方案
图5所示为内窥镜摄像头单元的框图。窥镜的框图与之相似,除了数字视频接口为显示控制器所取代。UWB物理层基于Wionics Research的RTU7012双波段PHY,符合WiMedia PHY 1.1 和PHY 1.2规范。它可以用于频带组1和3。
在这个例子中,UWB流媒体MAC由苏黎世应用科学大学设计并通过ASIC或FPGA实现,且针对实现低延时的数据传输进行了优化。为了方便将MAC集成到任何系统级芯片(SoC),将ARM高级主机总线(AHB)用作数据传输总线,将ARM外设总线用作控制总线。这些接口使得MAC非常适合集成到基于ARM的系统级芯片。
UWB标准的许多参数都由微控制器固件来控制。这样,在需要增添其它高层协议(如无线USB)时,无须修改任何硬件。使用固件实施方案,可以在规范发生变更的情况下降低风险和提高灵活性。
图 4 电子内窥镜单元的框图
MAC可在UWB设备间以任何方向传输任何数据---而不局限于视频。在这个具体的视频应用中,来自摄像闲的信号通过数字视频接口和AHB传送到SDRAM,该SDRAM用作一个视频中间缓冲器(见图5)。MAC从该SDRAM提取视频数据,并将其传送到UWB网络进行传输。反过来,UWB物理层接收到的数据则被传送到SDRAM。
在UWB网络和SDRAM之间传输数据时,MAC用作AHB主总线,无需处理器核进行干预。这意味着,可以将数据传输中解放出来的处理器用于控制后续UWB超帧的MAC设置。在这种架构下,任何AHB总线设备都可成为数据传输的目标或源,无论是传送到UWB-MAC,还是从UWB-MAC传出。至于和UWB无线模块的接口,UWB-MAC采用WiMedia ECMA369 MAC-PHY接口标准。
内窥镜的其它必备部件包括A/D转换器和用于电池管理的脉宽调制器(PWM)。为将所有部件集成到内窥镜的手柄中,同时保持低功耗,标准单元ASIC是不错的选择。然而,如果预知的产量太低,不足以分担本示例中标准单元ASIC的开发成本,可采用可定制的应用处理器(CAP)。这一基于ARM的微控制器具备所有常用的外设和软件驱动以及用于实现用户定制功能的金属可编程逻辑区域。可在CAP金属可编程区域实现UWB-MAC和其它定制IP核,类似于门阵列。该微控制器的其它标准外设,如外部总线接口(EBI),可用于控制SDRAM,不会导致与内存控制器设计相关的技术风险和成本。
为便于UWB应用开发,有些供应商提供一款CAP UWB*估套件。CAP器件的固定部分可以当做一个标准的微控制器,和用于仿真金属可编程模块的高密度FPGA协同工作。这个*估套件可以快速地进行配置,仿真目前正开发的设计的性能。可在FPGA中实现UWB-MAC以及其它专用逻辑。
在一块扩展板卡上实现UWB物理层。CAP UWB*测工具套件与一台运
- 无线知识充电站:图解多址技术(05-04)
- UWB无线通信及其关键技术(10-14)
- 诺基亚研发远程充电技术 可让手机实现“无限待机”(02-25)
- 如何让超宽带(UWB)信号测试变得简单易行?(03-02)
- 集崭新的超宽带(UWB)无线通信技术(02-11)
- 大功率医疗设备开关电源维修方案(02-16)