2013年光子学及激光领域前20大进展
光子学世界中的人们擅长的是提出新奇的点子和发明有趣的新鲜事物,同时他们还不断的推动着现有的光子学技术进步。接下来将为你带来2013年度光子学及激光领域的前20大进展:
1、头戴式显示设备
近日,消费者在通信领域和计算机领域对"churn"的高度评价,使人们相信光子学研究是时候向和消费者世界的交叉路口进军了。类似眼镜的头戴式显示设备中,最著名的就是谷歌公司所研发的基于液晶显示的谷歌眼镜。同时,其他公司也在研究各自的设备,采用不同的显示技术和成像技术,比如有机电致发光二极管和硅基板液晶显示。
2、对白光LED的理解
标准白光LED,由氮化镓(GaN)半导体发射的蓝光和磷光体发射的黄光合成,已经成为当今市场上效率最高的照明用白光光源。但是有一个限制它变得更加高效的因素,那就是所谓的"效率下降"现象——当白光LED的驱动电流升高时,量子效率出现下降的现象。此现象的发生机理已经争论多年,最近,加州大学圣芭芭拉分校(UCSB)和法国巴黎综合理工学院(位于法国巴黎的帕莱索小镇)的研究人员的最新实验结果明确指出,此现象可能会导致白光LED的照明效率达到300lm/W。
3、功率最高的激光器及其测试方法
让我们来到工业界,用于材料加工处理的激光器的功率变得更高了——实际上,它们现有的功率水平已经超过现有的应用水平了,这将促使研究者们去寻找怎样才能充分利用这些高功率激光器。由IPG Photonics公司(位于马塞诸塞州牛津镇)研发的一种100千瓦的光纤激光器已经实现了商业化生产,第一台产品在今年的早些时候被运送到NADEX激光研发中心(位于日本名古屋),该中心主要针对激光器的材料处理性能开展详细研究。对于这台激光器,Ophir Photonics公司(位于犹他州北洛根)特意研发了一种激光功率计,在输出1070纳米的激光时,测程能够覆盖到100千瓦。
4、直接半导体系统
高功率直接半导体激光传输是将二极管激光器的输出光直接耦合进光纤中,最终能获得高达千瓦量级的输出,因为二极管激光器的电光转换效率高达70%,所以这种方式的总体效率非常高。这种技术的难点在于如何将足够大的激光能量耦合到非常细小的光纤当中,最终获得有实用价值的并且亮度足够大的光束。为此对多种耦合方法进行了实验研究。
5、应用于光谱学的垂直腔面发射激光器(VCSELs)
来自联邦物理技术研究院(PTB,位于德国布伦瑞克)、达姆施塔特工业大学(位于德国达姆施塔特)、以及杜伊斯堡大学(位于德国杜伊斯堡)的科学家们已经完成了利用垂直腔面发射激光器(VCSELs),开展可调谐二极管激光器吸收光谱(TDLAS或TDLS)的相关研究。此方法能够用于检测内燃机中的水蒸气,可取代分布反馈式器。VCSELs有着很大的可调谐范围,并且在高调制率时调谐范围不会减小,因此能够覆盖整个吸收线范围。
6、激光建模软件
在搭建激光器光路之前(或者实验优化过程中),如何能够建立一个数值化物理模型,能够描述激光器特征?Synopsys 公司(位于纽约州奥思宁)开发出一种名为Rsoft LaserMOD的新软件,能够对二极管激光器和VCSELs进行建模,软件基于速率方程并选用了以特性测量导向的模型。这里有一个额外的选项:Simphotek公司(位于新泽西州纽瓦克市)的工程师发明了一种分析激光器和放大器的模型,满足激光世界2012年度前20技术榜单的评选条件,同时公开了一些对极度复杂的激光和光与材料相互作用的物理过程迅速直接建模的研究案例。
7、光子学研究成果展示
极紫外光刻光学系统。这是人们提出的最具实用价值的光子学项目之一,虽然已经经过了数十载的研究,但是仍处在发展当中。现在的技术水平已经可以以12纳米的分辨率成像,并仅有几个纳米的图像畸变。这是一项能够让你手中笔记本电脑和智能手机质量变轻的研究。对于采用传统光源(准分子激光器)进行光刻而言,现如今的技术已经发展到了极限,光刻技术的发展的新方向就是13纳米的极紫外(EUV)光刻。与以前一样的是,光学系统的数值孔径(NA)越大,其分辨率越高。
8、薄片激光器
薄片激光器的结构上的优点是能够快速的将激光增益介质中产生的热量导出,并且不会带来光束畸变,薄片激光器的输出能力已经达到了30千瓦的水平,已经超过了美国国防部的"耐用电子激光倡议RELI"的能量水平,被认为是定向能武器的有力候选者。这种薄片激光器由波音公司(位于新墨西哥州阿尔伯克基)研发。
9、更高的激光核聚变输出
或许如今最大型的激光核聚变装置当属美国的国家点火装置(NIF,位于加利福尼亚州利弗莫尔实验室),该装置不仅
光子学 相关文章:
- 湖南大学教授发现石墨烯新特性 将在微波光子学中崛起(12-18)