微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 新科技新产品 > 复旦大学突破物联网核心技术 有望加速柔性电子领域应用

复旦大学突破物联网核心技术 有望加速柔性电子领域应用

时间:02-20 来源:mwrf 点击:

复旦大学突破物联网核心技术 有望加速柔性电子领域应用

近日,复旦大学信息科学与工程学院仇志军副教授与刘冉教授领导的科研团队在揭示有机薄膜晶体管(OTFT)性能稳定性机制上取得突破性进展,提出了一种水氧电化学反应与有机薄膜载流子相互作用的统一理论模型,这一成果有望加速柔性电子领域的大规模应用。相关论文发表在1月27日出版的国际权威性学术期刊《自然-通讯》(Nature Communications)杂志上。

物联网和智能物品的"最核心"技术——柔性有机薄膜晶体管(OTFT

在过去的半个多世纪里,以集成电路为基础的信息技术突飞猛进,引发了人类生产和生活方式的深刻变革。随着半导体器件尺寸走向量子极限,传统的硅集成电路技术在未来10~15年可能走到尽头,支撑了集成电路半个多世纪发展的摩尔定律开始走向终结。

在这种新的形势下,信息科技在后摩尔时代必须有新的基础性突破和发展。与此同时,人类社会将全面进入信息网络社会和知识文明时代,信息网络将成为人类最重要的基础设施和公共资源,成为国家、社会法人和个人重要的生存发展平台。信息科技也将步入信息网络、物理世界和人类社会三者动态交互、全面融合的物联网时代。

未来可以预见,世界上任何一个物体从轮胎到牙刷、从房屋到纸巾,都可以通过物联网进行信息交换。在那时,射频识别技术、传感器技术、纳米技术、智能嵌入技术等将得到更加广泛的应用。

搭建物联网的基础是数以亿计的信息传感设备。由于柔性电子特有的弯曲性和可延展性,使其在与物的结合中发挥出重要的作用,成为桥接"物"与"云"的关键技术。正因如此,基于有机半导体材料和纳米材料等的柔性大面积电子技术在后摩尔时代得到迅猛发展。

与传统电子器件相比,柔性电子技术拥有众多优点:(1)器件可弯曲与伸展,由此可诞生众多新型应用领域;(2)可以在柔性和大面积衬底上采用大规模印刷技术加工实现,生产成本低廉;(3)加工设备简单,前期投入成本低;(4)加工过程属于低温工艺,工艺简单,不会对环境造成污染。

因此从某种意义上说,由于其与各种"物"良好的集成性和结合性,可以形成诸如智能包装、可穿戴的健康护理产品等,柔性电子技术成为促成物联网真正普及和大规模应用的"最核心"技术。大面积柔性有机薄膜晶体管(OTFT)和相关集成电路开始受到科研人员的青睐。

早在上世纪80年代初,国外就有科学家开始尝试用有机半导体材料替代硅材料作为导电沟道,构成新型薄膜场效应晶体管(TFT),开创了有机薄膜晶体管(OTFT)研究。OTFT质轻,膜薄,具有良好的柔韧性,还可以大面积"印刷"在任意材料表面,达到大幅降低生产成本目的。不同于常规硅基微电子器件,OTFT具有加工工艺简单、成本低廉和易弯曲等优点而赢得广泛关注。

但令人遗憾的是,当时器件载流子迁移率极低,只有10﹣5 cm2/Vs,远低于非晶硅材料,从而导致器件工作速度慢而且极易在空气中退化。材料中的迁移率是用来表征载流子(电子或空穴)在半导体材料内运动速度的快慢,迁移率越高,器件的运行速度也就越快。

在过去近30年的研究过程中,各国科学家在材料、器件、系统集成以及制备工艺方面取得了一定进展,但仍面临诸多困难和挑战。与成熟的硅器件相比,目前OTFT的大规模应用存在两大障碍,一是电流驱动能力不够、迁移率低下,二是可靠性差、寿命短。

国际前沿的领跑者

从2008年起,复旦大学仇志军副教授与刘冉教授领导的科研团队联合瑞典乌普萨拉大学和瑞典皇家理工学院开始针对有机薄膜晶体管(OTFT)展开一系列的研究。近年来,该团队在有机半导体材料和器件研究方面取得骄人成果,并很快走到国际前沿,研究成果陆续刊登在Advanced Materials 、IEEE Electron Device Letters 、IEEE Transactions on Electron Devices 等国际知名学术期刊上,受到广泛关注。

研究团队首先希望在器件运行速度上有所突破,达到可实用要求,并探索有机薄膜晶体管(OTFT)电学性能稳定性的本质机理。在实验过程中,他们发现如果对这些有机材料进行某种程度的修饰,比如,采用碳纳米管掺杂的有机半导体材料,就可显著改善OTFT的电学性能。经过五年多的不断尝试、试验,该科研团队已成功将有机薄膜迁移率从10﹣4 cm2/Vs提高到10 cm2/Vs左右,增加了四个数量级,接近多晶硅的水平,达到了可实用的量级。

但是还有一个根本性问题始终困扰着该研究团队——如何提高OTFT的性能稳定性。在解决该问题之前必须先了解"影响有机薄膜晶体管稳定性的内在机理究竟是什么"?研究团队决定打破砂锅问到底。

机理性突破:"水氧电化学反应"引发的"海绵效

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top