软件无线电关键技术的新趋势
AD和DA变换器在软件无线电系统所处的位置是非常关键的,它直接反映了软件电台的软件化程度。对于理想的软件无线电而言,AD变换器的动态范围必须在100—120dB或者16-20位,最大输入信号频率要在1GHz和5GHz之间。就目前的技术发展水平,很难实现这些技术要求。近两年来,随着现代深亚微米技术的应用,出现了多种AD变换器结构:∑△结构和管状结构。∑△结构AD变换器的优势在于能提供较大的动态范围和高线性度,但变换速度有限。要提高速度,关键一点是改进结构,如降低重复取样速率,减少多比特环路和高阶环路稳定度问题以及优化所需的放大器的带宽等。管状AD变换器能实现最高的变换速率,但分辨率只能限于13—14位。通过优化整个结构,包括采用先进的校准电路和纠错算法可实现更高的分辨率和变换速率,最终实现更大的动态范围。据有关研究显示,混合结构的变换器,如管状∑△结构或管状折叠插入式AD变换器是很有希望的概念,这种结构不仅能综合不同结构在分辨率和变换速率方面的优势,而且还具有纠错算法、降低功耗和适应不同环境的能力。首个分辨率超过4位、变换速率超过1Gsampless的AD变换器已公布于众。尽管仍以牺牲功耗为代价,但向超高速AD变换器发展趋势是清晰可见的。
根据最新资料显示:将超导和光取样技术应用于AD变换器已成为未来的发展趋势。具有突破性的一项技术是"快速单通量"RSFQ 技术。该技术基于超导基本量子机械特性,说明了离散的量化形式中存在着磁通。在该技术中,单磁通量子脉冲代表二进制值。因为一个完整的单磁通量子代表一个脉冲,所以这种技术的性能受到输入信号最大转速率的严格限制。因此可以通过对处理速度与分辨率进行折衷的方法来达到最佳技术性能。在一个重复取样的基于超导AD变换器中,孔径抖动的影响会大减少,使超宽频段工作已切实可行。而且在这样的AD变换器中,其输入端的取样速率与输出端不同,其内部的可编程抽取器可根据比特数和带宽进行折衷来设置。
基于超导技术的AD变换器另一个重要特性是高灵敏度。驱动单磁通量子电路所需的最小功率是1mW,即比高速半导体AD变换器所需的1 mW小了三个数量级。这一特性加上高取样速率最终可使系统无需使用低噪声放大器LNA ,并可直接在天线端取样,由此可以得到更高的系统增益。尽管超导AD变换器与半导体AD变换器相比,在性能上还没有显著的优越性,但主要的技术精华还是非常有前途的。目前工作于19.6Gltz频段的超导AD变换器已有演示。
在光取样AD变换器中,取样与量化功能分别是在光域和电子域中完成的。光取样AD变换器的主要优点在于模式锁定激光源的定时抖动小。目前已报道,信噪比SNR 为51dB的光取样AD变换器就相当于速率为505Mss,有效分辨率为8.2比特的传统半导体AD变换器。在不远的将来,通过进一步的改进,预计可以实现取样率达到数GHz且具有12比特分辨率的光取样AD变换器。另外,锁定在10GHz激光模式已实现了光时钟脉冲的产生,每3ps3皮秒 宽脉冲的定时抖动为16fs0.016% , 幅度抖动为0.058%。这些标准的抖动值可使光取样率在10Gss时,精度达到11比特。
下面对不同的AD变换器技术进行了比较:(其中,超导AD变换器分辨率位数和速率都不是固定的值,可以进行折衷,以达到所期望的性能。)
目前DA的发展水平是:高精度DA16bits 5MSPS,高速度DA14bits 1GSPS,速度和精度兼顾DA 14bits 300MSPS。DA技术可用变换器,还需要高速存储器,现在集成电路技术的发展已有1ns的砷化嫁RAM商品,但将大量砷化嫁RAM用到任意波形发生器上显然价格过高,而且也消耗大量功率,比较经济的做法是用多路转换的方案,允许波形存储在相对低速的COMSRAM。
DSP是限制软件无线电发展的瓶颈问题,其数据处理速度和精度直接关系到软件无线电台能否实现。目前采用的技术方案主要是数字信号处理技术DSP、专用集成电路ASIC、现场可编程门阵列FPGA以及这几种技术的结合。高速DSP芯片是软件无线电的核心部分。随着微电子技术的发展,数字信号处理器件在速度和性能上有了很大的提高。2003年TI推出了业界速度最快的三款新型720
软件无线电 相关文章:
- 软件无线电技术与可重配置计算体系结构(12-05)
- 软件无线电技术解决无线通信的兼容问题(03-27)
- 软件无线电及其在移动通信中的应用(05-07)
- 软件无线电及其短波应用示例(12-23)
- NS基于模数转换器系列的软件无线电应用(12-11)
- 软件无线电:未来无线设备的DNA(12-16)