微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 无线充电 > 用通量场定向材料优化无线充电的设计

用通量场定向材料优化无线充电的设计

时间:01-17 来源:互联网 点击:

司的EM-600)的磁导率和损耗与频率关系的测试结果

CMF薄片由填充了磁性填充物的人造橡胶组成。CMF型薄片具有很好的挠性和适中的价格。这些薄片一般具有比性能更好的SF薄片更低的磁导率,对某些EMIC-WP系统来说是很有用的选择。

MF具有最高的磁导潜力,因而能够提高EMIC-WP性能。这些产品可以实现很薄的解决方案,并且能够堆叠成多层解决方案,进而实现最优的EMIC-WP解决方案。

每种FFDM的磁导率和损耗特性都将随给定频率而改变。在EMIC-WP设计中,这些材料可以单独使用,也可以互相一起使用,从而实现能够满足主要设计特性的解决方案。设计时可以把FFDM放在箔片底下及沿着箔片设计的边缘放置。

当在典型产品中使用时,这些材料中每种材料的属性都有很大的变化。从这些材料在EMIC-WP系统中的性能和在EMIC-WP系统工作频率点的最佳磁导率/损耗比的比较可见一斑(见表)。

表:SF、MF、CMF材料的振幅磁导率和电阻率比较

\

利用FFDM优化EMIC-WP

由于以下一些特性,FFDM可以帮助设计人员实现EMIC-WP系统的最优化。

美学设计:高性能FFDM(在工作频率点具有最高磁导率、最低损耗)可减少设计厚度,实现纤薄的外形设计。
更轻的重量:FFDM可以提高线圈效率,有利于使用更小的线圈,而限制最终设计的重量和尺寸。

可靠性:FFDM有助于增强EMIC-WP系统的设计鲁棒性和可靠性,因为它能限制杂散EMI场和相关的负面影响,例如:其它系统元器件的感应加热。

高效的能量传输:FFDM可以用来集中EMIC-WP初级线圈的通量场,实现与接收线圈更有效的耦合,从而提高能量传输效率。FFDM设计还有助于改善充电时间。总之,采用FFDM精心设计的EMIC-WP系统可以达到70%以上的能量传输效率,并且具有与普通移动设备的有线插座充电器近乎相同的设备电池充电时间周期。

一些公开发表的文章还指出,EMIC-WP系统具有比普通消费型硬连线充电器更多的潜在优点。与持续插入电源的硬连线充电器相比,能够给多个设备充电并且包含可关闭系统使之到达可忽略待机功耗的智能电子器件的EMIC-WP系统,可以实现更好的节能效果。

总之,从硬连线墙式充电器和EMIC-WP系统的实际使用情况可以看出,EMIC-WP系统至少是一种不带电的功耗系统或改进了的系统。线圈设计中的FFDM选择和几何实现是满足能量传输设计目标的关键。

安全:由于支持多台移动设备,EMIC-WP系统可以认为比更常见的消费类替代品更加安全。这是因为EMIC-WP家用产品具有更少的硬连线和更少的通断操作。

FFDM可以显著影响EMIC-WP线圈的性能,这可以通过比较以下三种不同情形看出:自由空间,接近金属型结构的线圈,以及介于线圈和金属结构之间的FFDM (图2)。这种建模表明如果线圈接近没有FFDM的金属表面时,涡流损耗将会如何影响通电线圈。FFDM可以重新聚焦通量场,确保正确的通量场管理,从而实现可能最高的系统性能。

\

图2:在三种环境中对线圈和相关通量场进行建模:在具有确定通量场的自由空间中的线圈(a),因涡流损耗而减少了通量场的、靠近金属表面的线圈(b),在线圈和金属之间有FFDM的、靠近金属的线圈(c)。后者显示了显著改进的通量场性能。

在典型的EMIC-WP系统配置中,移动设备在进入初级线圈通量场时,使用FFDM优化接收线圈感应(图3)。使用FFDM可以增强初级线圈通量场,并确保组件的其它部分具有明确的通量场和低损耗。接收线圈的FFDM可以优化经过线圈的通量场,从而建立高度的感应耦合效果。

\

图3:典型EMIC-WP系统装置中的移动设备在进入初级线圈通量场时,使用FFDM优化接收线圈感应

EMIC-WP系统可以采用单个线圈或多个线圈进行设计,以简化在初级线圈表面上的器件定位,实现最优的充电周期。FFDM可以与两种系统一起使用,并且可以根据磁导率、厚度、多层设计、材料组合、几何形状等改变实现。所有措施都是为了优化通量场路径特性和能量传输效率。

许多FFDM在其他移动设备应用中也很有用,例如:近场通信(NFC)或射频标签(RFID)应用。与EMIC-WP能量通量场不同,NFC/RFID应用具有初级(发送)和接收线圈(或天线),用于发送数据通量场。FFDM可以用来提高线圈效率,改善距离和误码率方面的通信性能。

FFDM还可以用于许多电子设备中因电流流动产生的低频磁噪声的EMI屏蔽应用。FFDM能够与流动电流产生的辐射磁通量场发生交互,并改变其方向,从而保护其它器件、系统线路或相邻元器件免受流动电流磁通量场的影响。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top