微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 用于宽带测量的数字化仪或示波器--关注的理由?

用于宽带测量的数字化仪或示波器--关注的理由?

时间:07-30 来源:mwrf 点击:

另一方面,数字化仪依靠计算机上的应用软件来完成大量分析。一些数字化仪允许访问板载FPGA(现场可编程门阵列),因此可以在仪器中添加自定义代码、滤波器、校正或数据压缩方案。这样的例子包括向输出添加算数运算,或随附查询表来更改输出。在某些情况下,您可能需要将自定义IP 添加到仪器中来执行特殊功能。在仪器FPGA 中添加定制功能可以增加仪器功能、降低成本、缩短开发时间,还可以提高测量速度。它也可以用于计算,所以您只需要处理数据输出即可,减少了要管理的数据量。

图5. 将自定义代码写入仪器的FPGA,可以缩短测量时间、加快测试或缩减数据需求。

Input Signal DC – 2 Ghz
Channel 1
Channel 2
High-Speed Digitizer
ADC
FPGA
Specific function
Insert custom code
Processed data
Recommended Host PC
输入信号直流- 2 GHz
通道1
通道2
高速数字化仪
模数转换器
FPGA
具体功能
插入自定义代码
处理过的数据
建议的主机

示波器和数字化仪都可以利用其他特定应用软件和分析工具来处理采集的信号。常用分析工具包括MathWorks 或是德科技的89600 VSA 复杂调制分析软件。

探测和输入电压。探测对于获得所需的信号至关重要。此外,如果考虑在更高频率、更高电压或更大电流下增加的电容负载,探测可能会变得更复杂。在进行较高频率的测量时应当使用有源探头。示波器通常提供各种探测选件,包括无源探头、有源的电压和电流探头、高电压探头、差分探头和光学探头。探头采用与示波器输入阻抗相匹配的设计。通过选择正确的探头,示波器可以支持更高的电压和电流输入。

数字化仪通常不包括匹配的探头解决方案,并且在很多情况下只支持固定的50 Ω 输入阻抗,其目的是尽量减少信号路径中额外电路的影响。此外,数字化仪通常嵌入在更大的系统中,这些系统中的信号连接是固定连接。

总结

示波器和数字化仪都使用ADC 进行宽带测量,但它们都针对不同的使用模式和应用进行了优化。

示波器针对在非常宽的带宽测试上的可视性进行了优化。它们具有非常高的波形更新速率,可用于查看和识别未知事件或毛刺。高级触发支持对特定事件进行归零,以供进一步分析或触发高速串行总线测试。各种类型的示波器探头能用于查看设计中不同点上的信号,通过信号调理来适应高电压、高电流或高频率。典型的示波器应用包括:

• 对设计执行调试和故障诊断。示波器可以查看信号细节—它具有极高的波形更新速率,能够显示波形细节(如毛刺和异常),并且能对设计中的目标区域进行探测。
• 捕获不常见的通信误码对于串行协议解码至关重要,具有硬件触发和串行协议解码功能的示波器可以实现这一点。
• 表征和验证数字I/O 性能以及各种COTS 技术(包括CAN、DDR、DisplayPort、PCIe、NFC 和其他技术)。

宽带数字化仪用于对信号保真度要求很高的应用。它们通常具有高分辨率和高动态范围,以及用于捕获信号的深存储器,以便使用快速多通道PCIe 总线将信号发送给计算机进行后期处理。在采集大量数据时偶尔会使用数据流传输。ATE 系统和高密度多信道信号分析应用都得益于具有高分辨率模数转换(ADC)技术的数字化仪。典型的数字化仪应用包括:

• 使用单信道或多信道数字化仪来监测电信号,以确定事件的物理特性,常用于激励响应实验。数字化仪可在不同时间点记录信号特征,以便对事件发生前后的情况进行分析。
• 通过进行多次跨信道幅度和相位测量可以校准多通道天线,然后进行比较,以确保信道/组件之间保持最小相位差。多通道数字化仪用于快速获取跨信道幅度和相位测量结果以进行比较。
• 多通道高速数字化仪用于采集MIMO 探测信号。
• 信号经过采样后,由板载FPGA 加以处理,或将I 和Q 数据发送到外部存储设备进行后期处理,以便在5G 毫米波MIMO 信道探测应用中创建有效的信道脉冲响应(CIR)数据。

在选择宽带信号采集所使用的示波器或数字化仪时,各个型号的详细信息及优缺点请见keysight.com/find/wideband-appnotes 或网络研讨会。

作者:Sheri DeTomasi 和Jean-Luc Lehmann,是德科技公司

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top