电子元件及电路组装技术介绍
先进板级电路组装工艺技术的发展
电路组装技术的发展在很大程度上受组装工艺的制约同,如果没有先进组装工艺,先进封装难以推广应用,所以先进封装的出现,必然会对组装工艺提出新的要求。一般来说,BGA、CSP和MCM完全能采用标准的表面组装设备工艺进行组装,只是由于封袋端子面阵列小型化而对组装工艺提出了更严格的要求,从而促进了SMT组装设备和工艺的发展。
1.漏板设计和印刷
在先进组装技术中,焊膏是广泛采用的主要焊接材料,焊膏沉积采用漏板印刷技术。在漏板印刷工艺中,刮板叶片将焊膏推入漏板开孔转移到电路板上,影响焊膏印刷性能的四个因素是:(1)漏板开孔尺寸,决定了印刷膏的量;(2)焊膏脱模,在特定焊膏情况下,开孔壁和几何形状和光洁度影响焊膏脱模;(3)开孔的纵横比和面积比,开孔的宽度和长度之比,开口面积和开孔壁面积之比;通常设计规则是纵横31.5,面积0.66;但是对于光滑的锥形开孔壁,这两个比分别为1和0.44就能获得良好的焊膏脱模。在设计漏板厚度时,这个两个比率就是重要的设计规则。当开孔长度大于其宽度的5倍时,纵横比是主要设计规则(QFP时),当开孔长度等于宽度时,面积比是更精确的设计规则(采用球栅阵列焊盘时)。(4)焊膏印刷精度,当在电路板上印刷焊膏时,电路板上的焊盘图形和漏板上的开孔在尺寸和位置上必须完全相符,漏印的焊膏立方块必须无变形。BGA、CSP和FCOB的板级组装极用共晶焊料合金,BGA采用普通SMT用焊膏就可以满足要求,但对于CSP和FCOB I/O端子比通SMT封装提供的焊接面积小,所以要求漏板开口更小,必须采用小于40um,颗粒尺寸的精细焊膏。它们的漏板设计和制造要求与窄间距器件一样严格。BGA、CSP和倒装片组装的漏板一般要求采用激光或电铸成型工艺,而后进行电抛光,虽然制造成本高,但一致性超过化学蚀刻漏板;有时还要求渡镍,并采用锥形开孔,以便提高孔壁光洁度,有利于焊膏脱模,漏板开口尺寸,一般比电路板上的焊盘尺寸略小为宜,开口以略微增加印刷的焊膏量。
漏板厚度是漏板设计的主要指标,对于BGA要求采用的漏板厚度为0.13-0.15mm,CSP用的漏板厚度是0.10-0.13mm.由于漏板较薄,印刷时要防止从开孔中掏出焊膏。组装BGA和CSP时,通常都按1对1的比例印刷;但对于CSP,实际印刷要比凸起尺寸大0.05-0.076mm,使再流焊后器件支撑高度略高些,以提高热适应性,并可继续选用三类焊料粉末。对于采用0.3mm直径凸起的CSP推荐采用0.3-0.6mmr矩形开孔。0.36mm的开口是采用三类焊料粉末最小可能的开口尺寸,以便进行一致性和重复性好的印刷。如果印刷0.25mm的矩形或圆形开孔将要求采用IV类焊料粉末。
为了适应电子产品的轻薄小型化、高密度、多功能和高可靠性的要求,混合组装技术仍然是21世纪初电路组装发展的趋势之一。不仅通孔器件和SMD混合组装,而且随着以倒装片为核心的直接能组装技术的推广应用,将会出现通孔元器件、SMD或倒装片在同一电路板上的组装,这就是对漏板设计和印刷提出了新的挑战。有不同的组装工艺完成混合电路组件的组装,其中采用再流焊接技术是比较理想的工艺方法,以便充分发挥SMT生产线的作用,降低成本,提高生产率,有几种漏板设计和印刷方法可供选择,其中比较理想的是双漏板印刷。
先进的封装对焊膏的印刷精度要求比普通SMT更加严格,所以应该采用视觉系统的高精度印刷机完成焊膏的印刷作业。这类印刷也有高档和中档之别,要根据用户的需要和可能选购。印刷作业开始,首先要完成漏板和电路板的对准,借助视觉系统可以很方便地实现漏板开孔和电路板上焊盘图形的精确对准。高级对准系统具有全集成图像识别处理功能,可以实现快速而准确的图像对准,确保高质量的焊膏印刷和高和生产效率。印刷和第二个问题是根据电路板类型、刮板类型和所用焊膏设定印刷高度、刮板压力和角度、印刷还度等印刷参数;另外环境温度和相对湿度也是重要的印刷参数;先进封装对印刷参数偏差要求严格,必须借助印刷机的计算机控制系统进行准确而严格控制。更高档的印刷机上还装有2D和3D激光检测系统,检查印刷质量,满足了先进封装对印刷精度的要求。
2.贴装技术
尽管阵列封装显著地使用贴装位置规范限制加宽,但是由于这类封装的I/O端子在封装体下面呈阵列分布,所以精确贴装这类器件最先决条件是检查焊料球的存在与否和间距,检查焊料球形状态。这就要求贴片机的视觉系统能根据球的形状质量因数和建立焊料球畸变认可等级实现这种功能……二维宽度和形状质量因素测试是检查整个球体积和畸变的可靠方法,所以,贴装机的视觉系统应具有合适和分辨率,以便搜集和形成最佳影响;为此就必须采用合适的外部照明和远心焦兰光学系统,并通过大深度聚焦提供恒定放大倍数,以便确定球的存在和精确尺寸;采用LED(发光二极管)提供最佳照明条件,特别需要轮廓对中的背照明和合理选用明视场和前照明,前照明应采用三个可编程光源给每封装形式提供特殊的理想照明,以便在焊球结构和背影环境之间形成适当反差,提供精确对中的光学条件。视场应适合观察物的特微和位误差要求,以便能确定良好的、有缺陷的损坏的焊料球之间的差别。处理全部先进封装的高性能贴装机必须拥有两台元器件摄像机(一台标准型和一台倒装片用摄像机)。BGA器件的精确定可以根据每个角落的5个球发现球栅的整体位置和取向,并根据BGA树检索算法和采用模板比较算法确定的位置;然后借助于灰度级机器视觉系统和计算机控制最后实现BGA的精确对准和贴装。另外还可以在PCB上设置器件局部基准标记,以便提高贴装精度。BGA的贴装误差主要来自接触表面的非共面性,所以在贴装操作期间必须建立和维持接触表面的共面性,采用自动准直仪,使贴装机的运动保持共面性。
CSP虽然是更加小型化的封装,但比BGA更平,所以更容易进行精确贴装。与BGA一样可采用上述方法检查球的存在与否,间距和变形状态,但无需采用灰度级视觉系统,仅需采用二进制摄像机就可以进行观察和对准,所以可以比贴装QFP和BGA更高的速度贴装CSP.
先进封装技术的推广应用,要求贴装机能适应IC芯片的精度要求,特别是倒装倒片贴装,可重复精度小于4um,采用高稳定高分辩率的定位系统,视觉系统能检查0.10-0.127mm的焊盘和0.05mm的高的凸起,所以倒装片视觉系统必须拥有不同的光源设施和比标准摄像机的分辨率很高的摄像机,高精度进行凸起的识别和对准。贴装机还应具有一定的喂料器公司(适合不同的喂料方式)和贴装工具更换能力,另外还应装备焊剂涂敷工具,满足倒装片贴装的要求。
先进封装的推广应用和混合技术的发展,要求组建柔性SMT生产线。根据电子产品的需求选择不同类型的贴装机和其它组装设备,组成柔性生产线,有条件时更应升级为CIMS,这样才能不断满足知识经济时采对各类电子设备电路组件的需求。
3.焊接技术
先进IC封装的实用化,板级电路组装密度的不断提高,双面组装和混合组装PCB组件的使用,对再流焊接技术提出了新的要求,容易设定焊接工艺参数,使用方便,炉内温度分布均匀,工艺参数可重复性好,适用于BGA等先进IC封装的料接,适应用不同的基板材料,可充氮,适于双面SMT的焊接和贴装胶固化,适合与高速贴装机组线,能实现微机控制等。能满足这些要求的再流焊接技术主要是热空气循环加远红外,加热的再流炉和全热气循环加热的再流炉。
全热风再流炉的显著特点是采用了多喷嘴加热组件,加热元件封闭在组件内,避免了加热元器件和PCB组件的不良影响,用鼓风机将被加热的气体从多喷嘴系统喷入炉腔,确保了工作区宽度范围温度均匀,能分别控制顶面积和底面积的热气流量和温度,实现双面再流焊。其主要问题是循环风速的控制和焊剂烟尘向基板的附着,还有,由于空气是热的不良导体,热传导性差,所以热空气循环再流炉中需要大量的循环热空气,这对复杂组件的焊接质量无疑有影响。