PCB抄板/设计原理图制成PCB板的过程经验
(1) 同轴电缆和双绞线:它们经常用在系统与系统之间的连接。同轴电缆的特性阻抗通常有50Ω和75Ω,双绞线通常为110Ω。
(2)印制板上的微带线
微带线是一根带状导(信号线)。与地平面之间用一种电介质隔离开。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。
(3)印制板中的带状线
带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的。
同样,单位长度带状线的传输延迟时间与线的宽度或间距是无关的;仅取决于所用介质的相对介电常数。
3.端接传输线
在一条线的接收端用一个与线特性阻抗相等的电阻端接,则称该传输线为并联端接线。它主要是为了获得最好的电性能,包括驱动分布负载而采用的。
有时为了节省电源消耗,对端接的电阻上再串接一个104电容形成交流端接电路,它能有效地降低直流损耗。
在驱动器和传输线之间串接一个电阻,而线的终端不再接端接电阻,这种端接方法称之为串联端接。较长线上的过冲和振铃可用串联阻尼或串联端接技术来控 制。串联阻尼是利用一个与驱动门输出端串联的小电阻(一般为10~75Ω)来实现的。这种阻尼方法适合与特性阻抗来受控制的线相联用(如底板布线,无地平 面的电路板和大多数绕接线等。
串联端接时串联电阻的值与电路(驱动门)输出阻抗之和等于传输线的特性阻抗。串联联端接线存在着只能在终端使用集总负载和传输延迟时间较长的缺点。但是,这可以通过使用多余串联端接传输线的方法加以克服。
4.非端接传输线
如果线延迟时间比信号上升时间短得多,可以在不用串联端接或并联端接的情况下使用传输线,如果一根非端接线的双程延迟(信号在传输线上往返一次的时间)比脉冲信号的上升时间短,那么由于非端接所引起的反冲大约是逻辑摆幅的15%。最大开路线长度近似为:
Lmax
式中:tr为上升时间
tpd为单位线长的传输延迟时间
5.几种端接方式的比较
并联端接线和串联端接线都各有优点,究竟用哪一种,还是两种都用,这要看设计者的爱好和系统的要求而定。并联端接线的主要优点是系统速度快和信号在 线上传输完整无失真。长线上的负载既不会影响驱动长线的驱动门的传输延迟时间,又不会影响它的信号边沿速度,但将使信号沿该长线的传输延迟时间增大。在驱 动大扇出时,负载可经分支短线沿线分布,而不象串联端接中那样必须把负载集总在线的终端。
串联端接方法使电路有驱动几条平行负载线的能力,串联端接线由于容性负载所引起的延迟时间增量约比相应并联端接线的大一倍,而短线则因容性负载使边 沿速度放慢和驱动门延迟时间增大,但是,串联端接线的串扰比并联端接线的要小,其主要原因是沿串联端接线传送的信号幅度仅仅是二分之一的逻辑摆幅,因而开 关电流也只有并联端接的开关电流的一半,信号能量小串扰也就小。
五、PCB板的布线技术
做PCB时是选用双面板还是多层板,要看最高工作频率和电路系统的复杂程度以及对组装密度的要求来决定。在时钟频率超过200MHZ时最好选用多层 板。如果工作频率超过350MHz,最好选用以聚四氟乙烯作为介质层的印制电路板,因为它的高频衰耗要小些,寄生电容要小些,传输速度要快些,还由于Z0 较大而省功耗,对印制电路板的走线有如下原则要求
(1)所有平行信号线之间要尽量留有较大的间隔,以减少串扰。如果有两条相距较近的信号线,最好在两线之间走一条接地线,这样可以起到屏蔽作用。
(2) 设计信号传输线时要避免急拐弯,以防传输线特性阻抗的突变而产生反射,要尽量设计成具有一定尺寸的均匀的圆弧线。
印制板的宽度可根据上述微带线和带状线的特性阻抗计算公式计算,印制电路板上的微带线的特性阻抗一般在50~120Ω之间。要想得到大的特性阻抗, 线宽必须做得很窄。但很细的线条又不容易制作。综合各种因素考虑,一般选择68Ω左右的阻抗值比较合适,因为选择68Ω的特性阻抗,可以在延迟时间和功耗 之间达到最佳平衡。一条50Ω的传输线将消耗更多的功率;较大的阻抗固然可以使消耗功率减少,但会使传输延迟时间憎大。由于负线电容会造成传输延迟时间的 增大和特性阻抗的降低。但特性阻抗很低的线段单位长度的本征电容比较大,所以传输延迟时间及特性阻抗受负载电容的影响较校具有适当端接的传输线的一个重 要特征是,分枝短线对线延迟时间应没有什么影响。当Z0为50Ω时。分枝短线的长度必须限制在
- PCB抄板工艺的一些小原则(07-28)
- PCB抄板之电路板清洗技术(01-08)
