工业运动控制中的测量技术
电流和电压传感器
电机控制中最常用的电流传感器为分流电阻、霍尔效应(HE)传感器以及电流互感器(CT)。虽然分流电阻具有隔离功能且会在电流较高时出现损耗,但是它们是所有传感器中最具线性、成本最低且适用于交流和直流测量的传感器。为限制分流功率损耗的信号电平衰减通常将分流应用限制为50 A或更低。CT传感器和HE传感器可提供固有的隔离,因此能够用于电流较高的系统。但是它们的成本更高,并且采用此类传感器的解决方案在精度上不及采用分流电阻的解决方案,这是由于此类传感器本身的初始精度较差或者在温度方面的精度较差。
电机电流测量位置和拓扑
除传感器类型外,还有许多可选的电机电流测量节点。平均直流链路电流即可满足控制需求,但是在更高级的驱动器中,电机绕组电流用作主反馈变量。直接相位绕组电流测量是理想的选择,可用于高性能系统。然而,在每个低位逆变器引脚上使用分流器或在直流链路中使用单个分流器可以间接测量绕组电流。这些方法的优势在于,分流信号全都以共用电源为基准,但是从直流链路提取绕组电流要求采样与PWM开关同步。采用以上任何一种电流检测技术均可进行直接相位绕组电流测量,但是必须隔离分流电阻信号。高共模放大器可提供功能隔离,但是人员安全隔离必须由隔离式放大器或隔离式调制器提供。
图4.隔离式和非隔离式电机电流反馈
图4展示了上述各类电流反馈选择。虽然只需选择其中一种即可进行控制反馈,但还可将直流链路电流信号用作备份信号以进行保护。
如前所述,系统功率和接地划分将决定需要的隔离分类,并从而判断出适用的反馈。系统的目标性能还会影响传感器选择或测量技术。纵观整个性能图谱,还可实现许多配置。
低性能示例:共用电位上的功率级和控制级,检测选项A或B
使用引脚分流是一种最经济实惠的电机电流测量技术。在本例中,功率级与控制级共享同一电位,不存在要处理的共模,并且选项A或选项B的输出可直接连接至信号调理电路及ADC.此类拓扑常见于微处理器中嵌有ADC的低功耗和低性能系统。
高性能示例:控制级接地,检测选项C、D或E
在本例中,需要进行人员安全隔离。检测选项C、D和E均有可能。在所有三个选项中,选项E提供最优质的电流反馈,并且作为高性能系统,系统中可能存在FPGA或其他形式的处理,可提供适用于隔离调制器信号的数字滤波器。对于选项C的ADC选择,通常采用分立式隔离传感器(很可能是闭环HE),以实现比使用当前嵌入式ADC产品更高的性能。与共模放大器相比,该配置中的选项D为隔离式放大器,因为需要进行安全隔离。隔离式放大器会使性能受限,因此嵌入式ADC解决方案便可满足需要。与选项C或E相比,该选项可提供保真度最低的电流反馈。此外,虽然可将嵌入式ADC视为"免费",将隔离式放大器视为"廉价",但实施时通常还需要额外的组件进行偏移补偿和电平转换,以进行ADC输入范围匹配,从而提高了信号链的总体成本。
在电机控制设计中,可采用许多拓扑检测电机电流,并需考虑多种因素,例如成本、功率水平以及性能水平。大多数系统设计人员的重要目标是改善电流检测反馈,以在其成本目标范围内提高效率。对于较高端的应用,电流反馈不仅对于效率,而且对于其他系统性能测量(如动态响应、噪声或转矩波动)也至关重要。很显然,在各种可用的拓扑中,存在性能由低到高的连续体,图5为粗略映射图,展示了低功率和高功率选项。
图5.电流检测拓扑性能图谱
电机控制系统设计人员目标、需求以及发展趋势:从HE传感器转换至分流电阻
与隔离式-调制器耦合的分流电阻可提供最优质的电流反馈,其中,电流电平足够低,完全可满足分流需求。目前,系统设计人员的明显倾向于从HE传感器转换至分流电阻,并且与隔离式放大器方案相比,设计人员还倾向于采用隔离式调制器方案。仅仅更换传感器本身就可降低物料清单(BOM)和PCB装配成本并提高传感器的精度。分流电阻对磁场或机械振动均不敏感。将HE传感器替换为分流电阻的系统设计人员往往会选择隔离式放大器,并继续使用之前在基于HE传感器的设计中使用的ADC来限制信号链中的电平变化。然而,如前所述,无论ADC性能如何,该性能都将受到隔离式放大器性能的限制。
而且进一步将隔离式放大器和ADC替换为隔离式-调制器可消除性能瓶颈,并大大改善设计,通常可将其从9到10位的优质反馈提升到12位。此外,还可配置处理-调制器输出所需的数字滤波器,以实现快速OCP环路,从而消除模拟过流保护(OCP)电路。因此,任何BOM分析不仅应包括隔离式放大器、原始ADC、两者之间的信号调理,而且还应包括可消除的OCP设备。AD701A隔离式-调制器基于ADI公司的iCoupler技术,具有±250 mV(通常用于OCP的±320 mV满量程)的差分输入范围,特别适合阻性分流器测量,是扩大此趋势的理想产品选择。模拟调制器对模拟输入持续取样,而输入信息则以数据流密度的形式包含在数字输出流内,其数据速率最高可达20 MHz.通过适当的数字滤波器(通常为适用于精密电流测量的Sinc3滤波器)可重构原始信息。由于可在转换性能和带宽或滤波器群延迟之间作出权衡,因此更简略、更快的滤波器能够以2μs的数量级提供快速OCP响应,非常适用于IGBT保护。