高阻器件低频噪声测试技术与应用研究--测试技术介绍
时间:10-04
来源:3721RD
点击:
弦信号源输出端电压有效值V 0,将一标准电阻器R 0的一端串接入交流信号源输出端,此时若电阻器另一端也串接入交流信号源输出端,则可得到流经电阻器的电流有效值为I0 = V0/ R0.
(2)将电流I 0输入至电流放大器的输入端,即将锁相放大器交流信号源输出端、电阻器R 0和电流放大器串联形成回路,再将放大后的正弦交流信号A0I0输入至锁相放大器的信号输入端。调整V 0的大小,使放大后的正弦交流信号有效值在锁相放大器的量程V max之内,即使下式成立:
之后,开启锁相放大器的扫频功能,保持V 0的幅度不变,将信号V 0的频率从零开始以一定的步长递增,一直递增到信号高频截止频率的10倍或100倍之间的某个频点值,锁相放大器会由此得到电流放大器对频率不同而幅度相同的信号的响应,即电流放大器在放大倍数A0下的幅频特性曲线I(f)。若样品的电流噪声信号功率谱密度远大于电流放大器本底噪声,则可将信号频率递增的上限设置为高频截止频率的100倍或更高;若样品的电流噪声信号功率谱密度接近放大器的本底噪声,则可将信号频率递增的上限设置为高频截止频率的10倍。操作中根据实际情,在放大器高频截止频率的10倍以上设置扫频的上限频率,以达到较理想的效果。
得到传输函数曲线后,计算机平台会按照公式(3-9)来计算放大器的归一化函数并利用归一化曲线还原功率谱密度高频部分被衰减的信息。最后,对数据进行各种分析处理,并将采集的信号数据和分析得到的结果数据存盘。整个流程如下图所示:
- 高阻器件低频噪声测试技术与应用研究--低频噪声测试技术理论(三)(10-03)
- 高阻器件低频噪声测试技术与应用研究--低频噪声测试技术理论(10-03)
- 高阻器件低频噪声测试技术与应用研究--高阻样品噪声测试解决方案(10-04)
- 高阻器件低频噪声测试技术与应用研究--低频噪声测试技术理论(二)(10-03)
- 高阻器件低频噪声测试技术与应用研究--低频噪声测试技术理论(一)(02-27)
- 高阻器件低频噪声测试技术与应用研究--高阻器件噪声测试技术(02-27)