微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 高低边电流检测技术分析

高低边电流检测技术分析

时间:10-13 来源:3721RD 点击:

注意,A1的输入失调电压毫无衰减地出现在输出端,并送入增益为250倍的放大器A2的输入端。因为这些失调电压与检测信号无关,将叠加到A2输入的均方根值(RSS)内,产生等效失调电压。假设两个运放都有1mV的输入失调,等效失调为

(VOS-EQ)^2=(VOS_A1)^2+(VOS_A2)^2

其中,VOS_A1和VOS_A2是A1和A2的输入失调电压。



因此,以上架构在A2输出端产生的误差电压为250×1.4mV=350mV,这只是输入失调的影响。运放的失调电压将造成14%的系统误差。

电阻不匹配对CMRR的影响

第二个主要的误差源源于运放A1的电阻臂公差。A1的CMRR主要取决于R2/R1和R4/R3.即使两个电阻臂的误差为1%,但仍会产生90μV/V的输出共模增益。利用1%公差的电阻,电阻臂的比例变化也会达到±2%,在最差工作条件下,将会产生3.6mV/V的共模电压误差。因此,对于10V的输入共模电压,在A1输出端可能产生高达36mV的误差(电阻臂1%的比例变化会产生0.9mV的误差)。36mV的误差显然是无法接受的,它会造成增益为250倍的A2进入饱和状态。1%电阻臂变化可能产生的放大后的误差电压为0.9mV×250=225mV.

总误差

总误差包括:A1输入失调电压的RSS、A2输入失调电压以及由于电阻误差造成的输出误差电压。如上所示,1%的电阻公差加上10V的共模变化,在最差条件下可能造成36mV误差。总计RSS输入误差电压为

(VTOTAL_OS)^2=(VOS_A1)^2+(VOS_A2)^2 +(VOS_MISMATCH)^2

其中,VOS_A1和VOS_A2是A1和A2的输入失调电压,VOS_MISMATCH是1%电阻臂变化引起的输入误差电压。

即使不考虑温度变化的影响,A1和A2放大器的输入失调电压以及1%电阻臂不匹配所产生的总误差也会导致高达1.67mV×250=417.5mV的误差,是满量程输出的16.7%。另外,对于417.5mV的误差电压,等效于417.5mV/25=16.7mV的输入失调误差,这也是设计中无法接受的。

总误差可以通过使用高精度电阻(0.1%)或有失调电压更低的放大器得以改善。但这将进一步增加了外部元件,提高系统成本。

注意,即使没有负载的情况下,分压电阻R4/R3和R2/R1仍然提供了一条对地的供电电流通路。这一低共模电阻对地通路将对电池供电产品造成很大影响,电阻的漏电流会迅速消耗电池能量。



图4集成高边电流检测放大器的基本架构

专用高边检流放大器

实际应用不仅需要在高共模电压下检测信号,而且还要求非常好的CMRR和低输入失调电压。图4是常见的集成高边检流放大器(CSA),集成在很小的封装内,从而大大缩小了电路板尺寸。采用高压工艺制造这类IC,使其能够处理高达80V甚至以上的共模电压,即使在电源电压低至2.8V的情况下。

在图4电路中,电流流过检测电阻时将产生一个小的差分电压,加到增益电阻RG1上。该电流(与检测电压成正比)为镜像电流,提供一个以地为参考的输出电流,从高边产生所要求的电位差。该电流输出通过一个电阻或电压缓冲器转换成电压信号。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top