PXI结合FPGA实现最佳WLAN测量,支持802.11ac
制失真和相位误差十分有用。通过该相位跟踪方法,该工具包仅计算误差向量幅度(EVM),EVM为对包长度和不同子载波的复数调制符号变化引起的误差。
默认值为标准。
注:下图为放大的256-QAM信号图。为了更好的说明参数变化效果,下图仅显示了4个符号。
通道跟踪
通过启用通道跟踪,WLAN分析工具包可估计前导包和数据的通道响应,然后将该响应作为整个包的通道频率响应估计。如禁用通道跟踪,该工具包可估计长训练序列(LTS)的通道响应,然后将该响应作为整个包的通道频率响应估计。
正交偏移补偿
WLAN分析工具包也可以补偿由于发生器/DUT引起的相位偏移。图11显示了带正交偏移的信号。正交偏移补偿最适用于带大量点的调制方式(如256 QAM)。
256-QAM信号图(已放大为仅显示4个符号)显示了正交偏移补偿的效果。
添加减损
NI WLAN生成工具包也可以在生成信号中增加减损并查看DUT的响应。通过WLAN生成工具包可添加以下减损:
载波频率偏移
采样时钟偏移
IQ减损 (增益失调\直流偏移\正交偏移\定时偏移)
载波噪声比
传输频谱屏蔽
802.11ac要求强制80 MHz频谱屏蔽测试。可选项也包括80+80 MHz和160 MHz频谱屏蔽测试。80 MHz段可以为连续或非连续(在不同波段中)。
工程师可以通过两个同步的发生器或分析仪生成并采集80+80信号。如图14所示,如果两段属于不同波段,将在每段中应用常规80 MHz频谱屏蔽,但当两段属于同一波段并且为连续时,将在信号中应用叠加的频谱屏蔽。
测量速度
所有测试工程师都面临缩减测试时间的挑战。在特定环境中,工程师需要保证新产品的稳定测试流程。在生成环境中,测试工程师需要以最快时间测试尽可能多的参数。
PXI平台可为仪器以及使用的处理器提供模块化方法,测试工程师提高测试速度的最简便方法就是使用最新最快的处理器。在传统箱式仪器中尝试升级处理器将会十分困难。工程师们很大程度上依赖于仪器制造商来提供最新的处理器。通过PXI系统,工程师自己即可购买高性能计算机来执行所有处理计算。
NI射频仪器已在主控计算机中实现所有调制/解调以及处理计算,该主控计算机可以嵌入PXI机箱或者使用由PXI系统控制的外部计算机。
图15显示了在802.11ac中使用不同平均数执行EVM和频谱屏蔽测试所需的测试时间。
总结
NI PXIe-5644R的速度、性能、体积和灵活性使其成为WLAN测试的理想仪器。通过开放式架构,用户可以对仪器进行FPGA级别的各种自定义,从而实现复杂的触发解决方案,工程师甚至可以在仪器中实现通道仿真。
- TATbed无线自组织网络测试平台设计与实现(01-10)
- 应对IEEE 802.11ac生产测试挑战(08-21)
- NI PXI结合FPGA实现最佳WLAN测量,支持802.11ac(08-24)
- 5G Wi-Fi时代,802.11ac设备面临的大批量测试挑战(11-24)
- 使用NI PXI矢量信号收发仪进行802.11ac测试(11-26)
- Qualcomm Atheros使用NI VST进行802.11ac测试,改(02-01)