集成ZigBee无线电设计、检定和验证
受全球变暖和能源价格上升的影响,市场对智能化、基于无线电控制的设备的需求快速增长,这些装置可用于监测、控制、传讯以及自动化能源和其他资源的输送。不过这只是基于物理层无线电标准的IEEE 802.15.4技术的许多应用之一。
虽然有许多相互竞争的基于该物理层的协议,但这方面目前的全球领导者是ZigBee组织,该组织发布了涵盖从家庭自动化和智能能源到零售和电信服务,再到远程控制和输入装置等所有领域的各项标准。ZigBee协议提供了一个网状设备网络,支持覆盖大面积区域和数百个甚至数千个设备的通信。如果采用一致的实现方式,那么来自不同来源的符合ZigBee标准的设备就能无缝地相互通信。
如你所想,围绕通常带有天线并得到FCC或其他地区机构批准的裸集成电路和模块已形成了一个充满活力的行业。嵌入式产品只能与采用IEEE 802.15.4低层协议的无线电电路一起提供,并需要独立的微控制器或微处理器来处理ZigBee软件及应用。市场上有些集成电路和模块内建用于运行ZigBee或其他协议软件的微控制器。这些集成电路和模块中有许多都具有未确定用途的I/O引脚,所以完整产品可能需要内容更少一些的模块和传感器和/执行器以及一个外壳。此外,这些模块可附带功率放大器和接收器低噪声放大器(LNA)。功率放大器和低噪声放大器可显著增加无线电射程,虽然其成本和功耗皆较高。
对这些选择中任何一种选择,都需要一个印刷电路测试板来支持集成电路或模块。另外还需要具有足够大的峰值功率且不受噪声干扰的电源。如果选择了芯片级无线电,则还需要相应的天线接口电路。
随着ZigBee协议在各类嵌入式系统和应用中变得越来越常见,工程师需要能够快速而高效地确认和验证ZigBee模块性能。这一系统级任务由于射频(RF)信号的存在和需要考虑模拟、数字和射频信号的相互作用而变得更加复杂。如后文所述,一种称为混合域示波器(MDO,其名称源于其包含频谱分析电路)的新型示波器可帮助减轻ZigBee测试任务。首先,我们来看一看主要设计考虑事项及相关折衷和权衡。
ZigBee设计考量
由于最终应用各式各样且有数千种产品均可适用ZigBee技术,所以在ZigBee的世界里没有所谓的以不变应万变之说。各厂家的ZigBee无线电选件的集成度各不相同,其中即有无线电集成电路,也有带有微控制器、功率放大器、天线和低噪声放大器的完整集成式模块。由于这一多样性的存在,所以设计人员必须了解其中涉及的折衷和权衡。应当考虑的主要方面包括:
成本 - 与集成电路相比,模块在材料成本与设计和管理审批成本之间存在重大折衷。模块成本由于其需要支持元件和装配劳动而显著高于无线电集成电路,即使数量庞大也不足以改变这一事实。多出成本中的一部分源自重复的印刷电路板材料,但大部分源自模块的设计成本以及向模块生产商退货。但是,设计无线电模块和获得必需的批准的成本是很高的。对于基于集成电路的设计,ZigBee联盟测试和批准会使成本增加。经验表明,在集成集成电路和模块间的成本平衡点通常为10,000 - 25,000个单元左右。
开发时间 - 预认证模块在产品完成后即可销售。对集成电路级设计的管理审批快时为一个月,但常常需要更长时间。通常,该时间被计入开发流程,因为产品需要接近最终形式,软件也需要在批准测试开始前起作用。
形状因素 - 从集成电路开始来设计定制无线电可提供无线电电路配置方面的灵活性。对于定制设计,由于产品的整体配置,无线电电路可利用模块不能嵌入的空隙。通常,市面上的模块的所有零件都布置在印刷电路板的同一面,所以模块可焊接到主板上。在定制设计中,零件可布置在任何配置中或电路板的两面。
协议灵活性 - 许多生产带有嵌入式控制器的模块和集成电路的生产商都不提供ZigBee或其他通信软件的源码。这极大地限制了设计者增加定制功能的能力。
特殊要求 - 对有些应用来说,集成了无线电和微控制器的模块或集成电路所提供的硬件功能可能并不够用。虽然总可以选择添加第二个微控制器,但这样一来总成本会超出预定水平。在其他情况下,可能需要提供市场上没有的功能。例如,美国规定允许无线电输出功率最高可达到1瓦,但很少有模块能达到这个水平。
天线类型和布置 - 模块的印刷电路板上可带有天线,其形式为印刷图案,或者为带有外置天线的"芯片"天线。如果模块上的天线是在屏蔽外壳的里面,或者其位置过于接近最终封装设计中的其他元件,则其性能可能受到影响。市场上有的模块带有用于连接外置天线的接头。但是,只有使用经认证可与模块一起使用的天线才是合法的。如果需要使用不受模块厂家支持的天线--例如因为需要更高的增益--则须经过有关机构的批准(这需要时间并会产生成本)。
集成式无线电的测试验证
在无线电的实现方案已定、相应的印刷电板板布局已定以及任何必需的软件编写完成之后,还需要进行大量测试来确保通信状况良好。
对大多数应用来说,无线电系统和产品的其他零件之间存在串行通信。例如,许多集成电路和模块使用四线串行外设接口(SPI)连接来控制无线电集成电路及相关元件,如功率放大器。为了选择频率信道、输出功率等级和其他许多参数,需要通过SPI命令来设置内部寄存器。SPI用于控制用来控制功率放大器或其他器件的通用端口引脚。SPI还用于将数据包发送到集成电路或模块,以及发送用于来传输数据包的命令。收到的数据也通过SPI总线来传输。
微控制器中的软件(无论集成或独立)需要提供最高等级的协议(ZigBee或其他)以及控制无线电的功率,并运行产品的其他方面。在许多应用中,无线电信号发射的时机非常重要,以致无线电在产品的一些其他耗电零件在运行中并使电源电压降至可接受水平以下时不会发射信号。
用于验证无线电操作的部分关键测试包括射频和电源测量、数字命令、寄生信号和干扰。为举例说明这些测试,我们把Microchip Technologies IEEE 802.15.4放大无线电模块(MRF24J40MB)与Explorer 16演示板搭配使用。屏幕截图来自泰克MDO4000系列混合域示波器--全球首款提供射频、模拟和数字信号的同时时间相关视图的示波器。设置和数据命令通过个人电脑来发送,以支持手动控制。图1显示了测试设置。一个对无线电设备的直接连接被用于简化功率和其他测量。也可以使用一个经过校准的天线来进行射频测量。
- WLAN测量的最佳选择:NI PXI与FPGA革新性应用优势(09-09)
- NI PXI结合FPGA实现最佳WLAN测量 支持802.11ac(10-06)
- 无线局域网MIMO测试方案(10-18)
- 基于无线局域网络基频发射模块测试系统(11-28)
- 电子电度表设计方案(03-25)
- 基于CC2530的Zigbee网络节点设计(04-11)