微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 在电路测试阶段使用无铅PCB表面处理工艺的研究

在电路测试阶段使用无铅PCB表面处理工艺的研究

时间:04-09 来源:3721RD 点击:

果是将损坏裸露的铜测试焊盘。所有的可测试性指导方针都强烈建议不直接对裸露的铜进行探测。当使用OSP时,需要对ICT阶段定义一套OSP规则。最重要 的规则要求在PCB工艺的开始打开版膜(Stencil),以允许焊膏能加到ICT需要接触的那些测试焊盘和过孔上。

优点:在单位成本上与HASL具有可比性、好的共面性、无铅工艺、改善的可焊性。

缺点:组装工艺需要进行大的改变,如果探测未加工的铜表面会不利于ICT,过尖的ICT探针可能损坏PCB,需要手动的防范处理,限制ICT测试和减少了测试的可重复性。

无电镀镍金沉浸

无电镀镍金沉浸(ENIG)这种敷层在很多的电路板上得到成功应用,尽管它具有较高的单位成本,但它具有平整的表面和出色的可焊接性。主要的缺点是无电镀镍层很脆弱,已经发现在机械压力下破裂的情况。这在工业上称为"黑块"或者"泥裂",这导致了ENIG的一些负面报道。

优点:良好的可焊接性,平整的表面、长的储存寿命、可以承受多次的回流焊。

缺点:高成本(大约为HASL的5倍)、"黑块"问题、制造工艺使用了氰化物和其他一些有害的化学物质。

银沉浸

银沉浸是对PCB表面处理的一种最新增加的方法。主要用在亚洲地区,在北美和欧洲正在获得推广。

在焊接过程中,银层融化到焊接点中,在铜层上留下一种锡/铅/银合金,这种合金为BGA封装提供了非常可靠的焊接点。其对比色使其很容易被检查到,它也是HASL在焊接处理上的自然替代方案。

银沉浸是一种具有非常好发展前景的表面加工工艺,但和所有新的表面工艺技术一样,终端用户对此非常保守。很多的制造商将这种工艺作为一种"正在考察"的工艺,但是它很可能成为最好的无铅表面工艺选择。

优点:好的可焊接性、表面平整、HASL沉浸的自然替代。

缺点:终端用户的保守态度意味着行业内缺少相关的信息。

锡沉浸

这是一种较新的表面处理工艺,与银沉浸工艺具有很多相似的特性。然而,由于要对PCB制造过程中锡沉浸工艺使用的硫脲(可能是一种致癌物)加以防范,所以有 重大的健康和安全问题需要考虑。此外,还要关注锡迁移("锡毛刺"效应),尽管抗迁移化学制剂在控制这种问题上能获得一定的效果。

优点:良好的可焊接性、表面平整、相对低的成本。

缺点:健康和安全问题、热循环周期的次数有限。

PCB表面处理总结

表1:OSP实验的条件参数。

表2:结论是当使用焊接测试点时,ICT性能大大提高。考虑到夹具和工艺的一些问题,用户相信一旦处理好这些问题,他们能获得的一次通过良率在80~90%之间。

上面是PCB无铅处理的主要方法。HASL仍将是最广泛使用的PCB处理工艺,这种情况下对于测试工程师来说没有任何变化。在某些国家,HASL已经被法律 禁止,并采用了替代方案。随着PCA制造扩展到更多的不同的全球区域,在ICT测试中可以看到的无铅处理工艺将越来越多。尽管OSP并不是HASL的自然 替代,但是它已经成为PCA制造商研究的首选替代处理方案。当没有改变工艺以允许在测试焊盘和过孔上用焊膏时,这将导致实际的ICT测试可靠性问题

结论是,PCB表面处理的工艺没有十全十美的,每种方法都有其需要考虑的问题。其中一些问题比其它问题更严重,所有这些无铅PCB表面处理工艺都需要在工艺步骤中进行修改,以防止在ICT出现夹具接触可靠性问题。

在ICT阶段HASL、OSP和银沉浸的比较考虑

现在我想重点关注这些表面加工技术以及它们如何影响ICT的性能。表面处理在测试点上留下软焊料"弧顶"和裸露的过孔,它们是理想的ICT测试对象。 HASL具有而OSP不具有的特性是吸收作用力,HASL是共晶SnPB,特别软。这种软目标具有两个好处:适应探针和吸收能量。

对于OSP PCB来说就没有这种软目标。相比而言,铜表面非常硬,不能吸收太多的能量,因此探针能"咬入"的直接接触的面积减少。外层的铜镀层一般在10到50微米 之间。把铜镀层与OSP覆层结合起来,你会看到用来探测HASL板的探针将不能在OSP表面处理的板子上使用。

研究表明,在回流焊和ICT 之间较长的传递时间内,OSP会在测试目标上产生很硬的"壳"。传递到ICT的最佳时间应小于24小时。有很多其他的工艺因素会对OSP对测试工程师带来 困扰的程度大小造成影响,其中的一些因素是:OSP提供商类型、在回流炉中经过的次数、是否去除了波峰工艺、氮回流还是空气回流,以及在ICT时的模拟测 试类型。

对铜表面的直接探测加上需要穿透OSP层的更高的探针作用力,产生了破坏薄铜层的实际潜在威胁,并导致内部短路。因此,我们的建议是永远别探测裸露的铜表面。

最近的事例显示,在5到10次的夹具激励之后,板子过孔或者测试点可能被戳穿。

对于某些

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top