微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于低压电力线载波通信的智能电表终端设计

基于低压电力线载波通信的智能电表终端设计

时间:03-20 来源:3721RD 点击:

图3中芯片的引脚5,6是采样电流输入通道,引脚7,8是采样电压输入通道。这两个通道的信号输入均为模拟信号,该信号由16位二阶Σ-Δ型A/D转换器分别进行A/D转换成数字信号。电流通道的数字信号通过高通滤波器消除直流成分,再和转换后的电压通道的数字信号相乘,得到瞬时功率P(t)。P(t)经过一个低通滤波器最终获得有功功率P.P 经过数字频率转换器D/F转换后,由引脚22输出与有功功率成正比的频率信号。整个过程只有在A/D转换输入和基准电压输入是模拟信号外,其他信息处理均在数字领域完成使得测量具有很强的抗干扰能力。在恶劣环境下仍能实现高精度和长期稳定的电能测量。设获取的采样电压和电流信号是正弦信号,则瞬时电压和电流分别为v(t)=Vcos(ωt+θv),i(t)=Icos(ωt+θi),令θ=θv-θi,θ是电压和电流之间的相位差。由此可以得出瞬时功率P(t)和有功功率P。

式中:V 是电压峰值;I为电流峰值;T为电压、电流基波周期;n是基波周期数,有功功率等于瞬时功率在基波周期内的平均值。

图3 ADE7755内部测量原理

当获取的采样电压和电流是非正弦信号时,可用傅里叶变换将瞬时电压v(t)和瞬时电流i(t)分别表示为它们谐波成分之和:

式中:V0是电压平均值;I0是电流直流分量;Vh是h 次谐波电压的有效值;Ih是h 次谐波电流的有效值;αh是h 次谐波电压的相位角;βh是h 次谐波电流的有效值。

由式(3),式(4)算出基波有功功率P1和谐波的有功功率PH可表示为:

  因此有功功率P 等于其基波有功功率和谐波有功功率之和,即:

2.3 电能计量测试结果及分析

本文所设计的智能电表经多功能电能测试仪检测,其测试的硬件连接如图4所示。

图4中多功能测试仪的零、火线分别接到智能电表的进线零、火线获取智能电表的输入电压,将钳形互感器夹到电表的出线上获取出线电流,从输出脉冲预留检测接口J6获取来自ADE7755电能计量模块输出的、与功率信息成正比的输出脉冲。设置合理的电表常数和校验圈数,即可检测并记录智能电表的电流、电压、用电量脉冲、有功功率、无功功率和功率因数。表1为测试结果。

图4 多功能电能测试

表1 智能电表电能测量测试结果

根据国家电网公司2009年发布的最新单相智能电能表技术规范要求Q/GDW364_2009中对单相智能电表的测量及监测要求测量误差不超过±1%.表1中对阻性负载、感性负载和容性负载的不同电流分别进行测试,由表1中可以看出智能电表的测量误差均符合要求。

2.4 智能电表的载波通信原理

图2中ADE7755的CF引脚输出的脉冲正比于即时功率,该脉冲通过高速光耦传到PL3201进行累加计算出电能计量信息。其中高速光耦对强、弱电都起到很好的隔离作用以避免强电的干扰而产生误差。PL3201内部集成了扩频载波调制解调电路,其载波发射专用引脚为P3.7脚,输出信号经RC串联电路耦合去除直流成分。Q2,Q3,Q4,Q5是一个互补对称的放大电路,主要对载波发送的信号进行功率放大。ZD1,ZD2对信号进行限幅以保护三极管,D7,D8起箝位作用,吸收来自电力线上的尖峰干扰。C73和L6组成一个LC滤波电路,滤除载波信号中所包含的谐波成分以免污染电网。

VHH为载波发射电压一般在12~15V 之间,其大小与载波发射功率有密切关系。在一定范围内提高VHH可以加大发射功率延长通信距离,本文设计VHH为15V。

接收载波信号由PL3201的SIGIN 输入,电路中PD10是一个瞬变二极管,能有效吸收来自电网的浪涌功率,起到保护整个电路的作用。C75,C76,C80和L5并联组成一个LC并联选频网络对信号具有选频作用。其频率计算公式为f=1/(2π √LC),当设计电感L=1mH,电容C=1.75nF时,由公式可知载波的中心频率f=120kHz,该信号被送入芯片与内部的600kHz本振信号进行混频,混频后信号频率为两者之差,即480kHz.

将此混频信号,输入陶瓷滤波器B2滤波,滤波后的信号是一个带通信号再经过限幅放大、硬件解扩,即可对有效数据进行还原。

3 智能电表的软件设计

智能终端的软件设计主要包括:电能计量、存储、载波发送接收及状态显示等。用户用电量经过计量芯片采样转换成有功脉冲,经过高速光耦传送给PL3201,PL3201收集来自计量模块的脉冲数换算成用户用电量并存储到存储模块,其电能计量软件流程图如图5所示。载波发送接收是由PL3201以中断方式实现,这样使得电能表能实时侦听公网电力线上的消息,真正达到随时在线的功能,其常态为载波接收状态。载波发送信号经过功率放大耦合到公网电力线上,通过载

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top