一种高可靠性的频率测量系统
器自动开始减数。直到再次遇到低电平时停止。这时,将计数器中的值锁存并读出。先从计数器读出低位low,再读出高位high。可求出频率为:
为使测量误差小于0.5%,由得fx≤50,如果待测频率分频后大于50Hz,为了精度更高,将选用10MHz的板载频率再次测量,过程相同。程序流程图如图6。
4.2 OMM-XT模块测频
OMM-XT模块只有一种大小为4MHz的板载频率,在测低频时,以4MHz作为基准频率,计数器会产生溢出。为解决这个问题,将计数器1和计数器2的级连,把计数器1的输出设置为计数器2的输入。计数器1对4MHz分频,产生50kHz的方波,计数器2用此频率作为基准频率计数。而在测高频时,只用计数器2进行测频即可。
为使测量误差小于0.5%,由得fx≤250,为了保留一定的裕度,设定fx≥200时换用测高频方式,即只用计数器2进行测频。同理,由
得fx≤20kHz,当待测信号频率大于20kHz时,精度无法保证,因此该法只适用于20kHz以下的频率。
4.3 GPIO-MM-XT模块测频
GPIO-MM-XT功能模块是基于FPGA的PC104计数器和数字I/O模块,嵌入两个CTS9513计数逻辑器件。其板载频率为40MHz,软件可配置16分频、256分频、4096分频、65536分频,得到大小不同的基准频率。测频原理类似于上述模块。程序流程图如图7。
图6 DMM-32X-AT模块测频流程图
图7 GPIO模块测频流程图
5 实验结果
使用EE1411型合成函数信号发生器产生的频率信号作为输入,对每个信号进行10次测量,得到的实验数据如表1所示,可见测量误差在0.2%以下。
6 结论
本文详细论述了一种高精度频率测量系统,该系统在设计上充分考虑了现场使用环境的特点和用户需求,并为离线数据分析处理提供方便。硬件上采用PC104总线模块,保证系统的高可靠性。软件平台采用NI公司的LabWindows/CVI,软件设计面向测试过程,界面友好,为功能扩展提供了良好基础。经实际测试表明,该系统用于电力电子测量中,满足相应的测试要求和测试指标,操作简单,可靠性好,检测效率高,便于携带和维护。
- 一种多周期测量频率的方法及应用(10-04)
- 用转速计测量超低频率(01-26)
- HT46R47组成的电压频率测量显示电路(03-03)
- ADμC834在测量中的应用(04-08)
- 基于虚拟仪器的频率测量软件系统设计 (04-04)
- 等精度频率计的实现(08-06)