基于3G视频的驾驶员疲劳状态检测方法
到特征图,以突出眼部特征。
其中,EyeMap是眼睛特征图,都归一化到[0,255]之间,是由Cr求反得到(255,Cr)。在得到EyeMap图后,设定阀值T,将EyeMap小于T的值设为0,这一步可视为一个简单的滤波以去掉非眼部特征的干扰。
得到EyeMap滤波图后,结合人眼粗定位结果,从左到右搜索,按比例定义相对于人脸区域一定大小的框,当框进EyeMap滤波图值的和最大时,即为人眼。
3.3 眼睛的追踪
对人眼完成定位后,还要利用动态模板匹配的方法跟踪眼睛。设眼睛模板左上角的位置为(x,y),下一帧的搜索范围是原位置上沿上、下、左、右4个方向各扩展10个像素。其公式为
式中,N是模板中像索的个数;M为模板;I为图像中待匹配的部分。
可得所有大于阈值p的最大值所对应的坐标为最匹配的位置。以此得到的眼睛图像作为下一帧图像的模板。在追踪的过程中,若得到的p均小于阈值或两眼的行距过大则重新回到眼睛的检测过程。
4 基于Perclos的疲劳识别
文中的疲劳识别基于Perclos的P80模型,即将闭合程度大于80%的眼睛状态判断为闭合状态。以初始时刻司机清醒时的上下眼睑最大距离为标准,若以后得到的距离小于此距离的80%则判断为闭合。假设实验视频帧率10f·s-1分辨率为640×480,时长60s。
则以每6s视频作为1个检测单元,间隔0.33s取1帧作眼睛状态检测。统计每个检测单元内18帧图像的状态,得到眼睛闭合帧数CloseFr ame_Num和处理的总帧数SumFrame_Num,依据式(7)计算相应的Perclos值。
如果所得Perclos值大于实验确定的阈值20%,则判断此时驾驶员可能已处于疲劳状态,通过报警系统进行警告。
5 结束语
视频监控能对驾驶者进行监督提醒,有效预防疲劳驾驶,减少疲劳驾驶所引起的车辆事故。3G视频监控是车辆监控发展的新趋势。算法在3G监控视频帧的基础上,进行了人脸定位、人眼定位与追踪及疲劳状态判断。实验表明,该算法有较高的鲁棒性及准确性,并能有效应用于实际。
- 面向3G手机的测试解决方案(11-04)
- 采用新型通信分析仪缩短W-CDMA信号的观测时间(04-30)
- HSUPA设备测试(11-05)
- 什么是TD-SCDMA?(06-03)
- 安捷伦科技展示全面的毫微微蜂窝基站测试能力(11-15)
- 基于软件的灵活LTE测试环境技术(06-29)