激光检测在汽车制造过程中的应用
焊接是汽车制造过程中的重要工序之一,具有很高的技术指标要求,因此必须对焊接质量进行很好地检测。传统的检测方式通常是采用三坐标丈量机,但这种方式操纵复杂、速度慢、周期长,只能对工件进行抽检。视觉检测作为一种新型的检测手段,具有大量程、非接触、直观、快速、精度高等优点,因而可以应用于汽车车身的在线检测,及时反馈产品的误差信息,不仅进步了产品的合格率,同时也为工艺改进、减小误差提供了闭环反馈的尺寸控制手段,符合现代制造的质量工程要求。图1所示为通用视觉检测系统框图,其中视觉测头即为各种类型的视觉传感器。
激光视觉检测系统车身的关键尺寸主要是风挡玻璃窗尺寸、车门安装处棱边位置、定位孔位置及各分总成的位置关系等,因此视觉传感器主要分布于这些位置四周,丈量其相应的棱边、孔、表面的空间位置尺寸等,一般为固定式丈量系统。在生产线上设计一个丈量工位,将定位好后的车身置于一框架内,框架由纵、横分布的金属柱、杆构成,可根据需要在框架上灵活安装视觉传感器。传感器的数目通常由被测点的数目来确定,同时根据被测点的形式不同,传感器通常又分为双目立体视觉传感器、轮廓传感器等多种类型。
1、工作原理
在实际应用中,通常是将多个视觉传感器组成一个视觉检测站,每个传感器首先计算出被测点在当前的传感器坐标系中的坐标,然后将所有视觉传感器坐标系汇聚在系统坐标系下,从而完成丈量。系统的工作主要建立在摄像机模型和立体视觉传感器三维丈量模型的基础上。为了得到被测点在车身定位坐标系中的坐标,需要以标准坐标系为中介,把被测点在传感器坐标系中的坐标转换到被测点在车身定位坐标系中,这就需要把传感器坐标系、车身定位坐标系与标准坐标系同一起来,称为中介坐标同一法。完成上述工作是通过局部标定和全局标定的过程来实现的。局部标定是利用透镜透视原理,标定出从世界坐标系到传感器三维坐标系的12个外部参数;全局标定采用的是中介坐标系方案(图2),通过采用靶标,求出丈量传感器所对应的传感器坐标系到经纬仪坐标系的转换矩阵,完成坐标系的同一。
2、先进的数字控制系统
激光视觉检测系统采用先进的CBVM测控软件,可以通过图形化的操纵界面实现检测站的所有功能,即使不熟练的操纵者也可以方便使用。同时,数据治理与分析软件负责丈量数据的治理以及完成局域网用户对丈量数据的查询和分析。
(1)整车数据查询与分析
整车数据查询是按整个车身进行查询,反映整个车身的情况。整车数据查询既可以按照车身的生产时间进行查询,也可以按照车身的编号进行查询。查询数据的列表可以采用多种排序方式:车身编号和点号、点号和车身编号、生产时间及生产班次等。数据的显示采用3种不同的底色来反映丈量点加工误差的大小。
(2)功能尺寸分析
功能尺寸分析是对一个车身的多个点进行综合评价。可以选择一定时间段生产的车身进行功能尺寸评价,也可以选取一定的车身编号段内的车身进行功能尺寸评价。评价表中列出了车身编号、生产时间以及各功能尺寸,表中数据的显示可以按照选定的功能尺寸项进行排序,也可以选择图示显示(图3)。
(3)统计功能
对整个生产线产品质量的检测数据统计可以分为月统计和年统计:对于每月逐日的产品进行数据统计,可以选择统计条件,如需要统计的月份、分歧格数目等,图表显示的形式可以是合格率也可以是日产量;年统计数目是根据月统计数目进行统计的,所以每个月的数据进行统计后,就会出现在年统计表格中。
激光视觉检测站的应用
随着汽车制造水平的不断进步,激光视觉检测站逐渐得到应用,一汽大众汽车有限公司从每一个总成开始,均采用该系统进行尺寸控制,出现题目的部件会被及时发现、报警并放回返修区。这样可以保证每一级总成部件均由尺寸合格的下级总成组合而成。不仅如此,由于数据实行实时检测、存储,当发现题目时,制造部分可以快速发现工装夹具的题目所在,在最短的时间内进行调整(图4)。
图4 视觉检测系统在焊装各级总成中的应用
除此之外,激光视觉检测系统还被广泛应用于焊装生产中,如门盖装配、前端切削焊接以及车身后部后尾灯定位孔的形成等。
传统工艺中灯安装孔采用多个冲压件焊接而成(如图5所示),其累计误差较大、且难以控制,导致后尾灯安装后与侧围匹配质量较差、尺寸不稳定。采用激光视觉检测技术,冲孔在各部件拼焊完成后进行,通过使用激光在线丈量,将后尾灯左右的型面形成数模,并与已经存储于控制器中的数模相对照,找出最佳匹配尺寸并
- 用激光检测系统评定和修正CNC机床(09-29)
- 基于LabVIEW和PXI平台的并联机器人控制系统的开发(07-25)