相位式光纤测量电路系统的设计与实现
和混频后低频测量信号。混频降低了信号频率,但保持相位差不变,便于鉴相操作。相位差的检测使用自动数字鉴相法。其原理如图7所示。参考信号和测量信号通过过零比较,得到参考方波信号和测量方波信号。比较两方波信号,得到两者之间的相位差信号,然后使用高频计数脉冲对相位差信号,然后使用高频计数脉冲对相位差信号进行计数。设参考信号和测量信号的周期为f,高频计数脉冲的频率为fc,一个周期内的计数值为M,则相位差为:△φ=2πMf /fc。为了减小偶然误差,提高鉴相精度,可以对多个周期计数求平均。设N个周期的计数值为M',则△φ=2πM'f/Nfc。
混频电路的实现基于混频器AD831。使用两片AD831,分别用于参考信号与本振信号混频及测量信号与本振信号混频。混频后使用芯片MAX274进行带通滤波,得到混频后的低频正弦信号。然后通过基于MAX912的过零比较电路将正弦信号转换为同相位差的方波信号,输入到FPGA中进行鉴相。在FPGA中,利用多周期自动数字鉴相法,对相位差进行检测。其实现框图如图8所示。
3 测量结果
在实际测量中,利用组合测尺频率先后进行两次测量。第一次取主振信号频率为52MHz,本振信号频率为51.99MHz;第二次取主振信号频率为51MHz,本振信号频率为50.99MHz。对应于混频后信号频率为10kHz。FPGA中鉴相高速计数脉冲频率为50MHz。基于以上参数,对多段光纤进行测量。两次测量的结果进行分析比较,可得到测量值。被测光纤的实际光程已由精密反射仪通过光学方法进行标定。测量结果如表1所示。
由以上测量结果可以看到,在一定的量程范围内,基于相位法的测量系统,对光纤光程的测量误差绝对值小于2mm。
4 结论
本文在FPGA、直接数字频率合成(DDS)、自动数字鉴相等技术的基础上,设计并实现了基于相位法的电路测量系统。实际测量结果表明,此测量系统在一定的量程范围内,对光纤光程的测量误差绝对值小于2mm。在此测量水平下,此测量系统可用于基于光纤的激光测距校正与检定中,对其中的光纤基线进行测量和标定,这为光电测距仪和全站仪的室内检定提供了一个可行的方案和参考。
本文所论述的相位法测量的电路实现是一个初步方案,在电路设计、系统优化和误差分析等方面还需要做进一步的改进,以提高系统性能。
- 消耗型光纤高温测量仪的研究(07-01)
- 变压器油温测量及光纤通信系统的设计(03-10)
- 基于光纤光栅的油井压力/温度监测方案(03-21)
- 基于虚拟仪器的光纤电流感测系统的设计 (10-09)
- 如何提高G652D光纤宏弯损耗测试效率(10-23)
- 光纤光栅传感器在水布垭面板坝安全监测中的应用(01-11)